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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• We demonstrated the buffer-gas cooling
production of the lead monofluoride
(PbF) beam and observed the B (υ’ = 0)
← X1(υ = 0) transition.

• We identified 171 hyperfine-structure-
resolved transitions for three PbF iso-
topologues and reported hyperfine con-
stants owing to both 207Pb and 19F
nuclei.

• The buffer-gas-cooled PbF beam and its
spectroscopic characterization will be
essential in developing sensitive detec-
tion schemes for measuring the electron
Electric Dipole Moment (eEDM).
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A B S T R A C T

Establishing a nonzero measurement of the electron Electric Dipole Moment (eEDM) has long been a fundamental
pursuit in atomic, molecular and optical physics, offering possible insights into new physics beyond the Standard
Model. In this regard, lead monofluoride (PbF) has emerged as a potential candidate for measuring eEDM pri-
marily due to its suitable properties such as the strong internal effective electric field, and eEDM-sensitive ground
state with large Ω-doubling and small magnetic g factor. In the present work, we realized the production of a
buffer-gas-cooled PbF molecular beam and characterized its high-resolution spectroscopy in the B 2Σ+(υ’=0) ←
X1 2Π1/2(υ = 0) transition, including both direct absorption and laser-induced fluorescence spectroscopy. A
highly concentrated beam of PbF molecules is obtained with a central forward velocity of 223 ± 17 m/s, while
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81, 66 and 24 hyperfine-structure-resolved spectral lines with a frequency accuracy of 40 MHz have been
assigned respectively for 208PbF, 207PbF and 206PbF isotopologues. The hyperfine constants due to the 19F nucleus
(A‖ and A⊥) of the B state are reported for the first time, and those of the 207Pb nucleus have been also updated.
Such a cryogenic molecular beam of PbF in association with its hyperfine-structure-resolved spectral atlas of the
B 2Σ+(υ’=0) ← X1 2Π1/2(υ = 0) transition will be essential in developing sensitive detection schemes towards the
eEDM measurement.

1. Introduction

The electron Electric Dipole Moment (eEDM) could arise due to the
simultaneous violation of Parity (P) and Time-reversal (T) symmetries,
rendering a nonzero eEDM indicative of new physics beyond the Stan-
dard Model [1–6]. For the last few decades, many experiments have
been conducted to establish a series of more stringent new upper bounds
on eEDM [7–21]. At present, heavy polar diatomic molecules have been
demonstrated to provide the smallest upper bounds on the eEDM, with a
HfF+ source yielding the best result of |de| < 4.1 × 10− 30 e⋅cm [19,21],
followed by ThO [17,20] and YbF [14]. Other diatomic or even poly-
atomic molecules, such as WC [22], RaF [23], ThF+ [24], HgH [25], BaF
[26], RaH [27], HgF [28], CdH [29], SrOH [30], and YbOH [31] have
also been proposed. In comparison, the lead monofluoride (PbF) mole-
cule possesses a relatively large molecular dipole moment, strong in-
ternal effective electric field [32,33], and eEDM-sensitive ground state
with large Ω-doubling and small magnetic g factor [34], thus making it
another promising candidate for the eEDM measurement [34,35].

Cryogenic buffer-gas cooling (BGC) has been extensively adopted as
a powerful technique to produce cold and slowmolecular beams [36] for
applications in precision spectroscopy [37–40], cold collisions [41–45],
laser cooling [31,46–49], magneto-optical traps [50–53], and Bose-
Einstein condensation [54]. In the eEDM measurement, the molecular
beam of interest is typically cool and slow to increase the coherence time
of the laser-molecule interaction. Previously by utilizing the BGC tech-
nique [14], a YbF molecular beam was cooled to below 100 μK, which
increases the coherence time from 0.642 ms to 150 ms. In the ACME II
project employing the metastable ThO molecule, a coherence time of
about 1 ms was achieved with a forward velocity of 200 m/s using BGC
[20]. PbF molecules adopted in the spectroscopic measurement so far
have not been realized in a BGC setup but in either a thermal reactor or a
supersonic jet expansion. In the thermal reactor experiment, PbF mol-
ecules were produced at high temperatures of 300–700 K or 1100–1200
K in a chemical reaction between either Pb and F2 [55–59] or Pb and
MgF2 [60–63]. In a supersonic jet expansion setup, the PbF beam was
obtained by ablating Pb target with a pulsed Nd:YAG laser followed by
reactions with SF6 [64]. However, the former source depicted a pro-
nounced ground-state rotational distribution in much higher J ground
levels while the latter one produced a beam with forward velocity
greater than 1000 m/s, none of which is suitable for precision mea-
surement and cold chemistry.

The spectroscopic characterization of PbF molecules has been
investigated in order to choose appropriate state-selective detection
schemes for the eEDM experiment. Previously, Shafer-Ray et al. achieved
PbF detection in a supersonic molecular beam using the resonance-
enhanced multiphoton ionization (REMPI) technique, with either A
2Σ+ or B 2Σ+ state as the intermediate state for ionization [60,65].
Although REMPI technique offers comparable or even higher sensitivity
than direct absorption or laser-induced fluorescence (LIF) spectroscopy,
the latter two are non-intrusive detection techniques and allow for
optimizing the production yield of cryogenic PbF molecules in situ. Also,
single-mode continuous-wave (CW) lasers can be used as light sources
for absorption and LIF detections, enabling narrower spectral linewidths
and high signal-to-noise ratio simultaneously. This is particularly
beneficial for the detection of the A 2Σ+ state that has a lifetime of 5 μs
[66], corresponding to a natural linewidth of 32 kHz. In addition, total
and dispersed fluorescence measurements can provide valuable

information for the preparation of ground-state populations of single
quantum levels using the stimulated Raman adiabatic passage (STIRAP)
technique.

In this article, we demonstrate the production of the buffer-gas-
cooled PbF molecules via the reaction of laser-ablated Pb with the car-
bon tetrafluoride (CF4) gas in the helium (He) carrier gas, which is
characterized by both direct absorption and LIF spectroscopy in the B
2Σ+(υ’=0) ← X1 2Π1/2(υ = 0) transition. The forward beam velocity is
determined to be 223 ± 17 m/s by collecting fluorescence signal at two
downstream spots, while hyperfine-structure-resolved spectra for
208PbF, 207PbF and 206PbF have been obtained and assigned with an
accuracy of 40 MHz. In contrast to the B 2Σ+ state characterization by
LIF detection in our supersonic jet expansion experiment [64], we
manage to resolve the hyperfine splitting due to the fluorine (19F) nu-
cleus limited by residual Doppler broadening, which have also been
clearly distinguished by theoretical calculations. We are then able to
update the molecular constants for the B 2Σ+(υ’=0) state of PbF, and
present the improved hyperfine constant b and dipole–dipole interaction
constant c for low-J levels of the B state. Our spectroscopic work here not
only provides a spectral atlas of cryogenic PbF molecules in the B
2Σ+(υ’=0) ← X1 2Π1/2(υ = 0) transition with better resolution and
updated molecular constants, but offers an alternative molecular
candidate that can be employed to measure eEDM in the spirit of the
Ramsey beam resonance technique as well [67].

2. Experimental setup

The absorption and laser-induced fluorescence spectra of the B
2Σ+(υ’=0)← X1 2Π1/2(υ = 0) transition of PbF were collected at the State
Key Laboratory of Precision Spectroscopy, East China Normal Univer-
sity. The cryogenic BGC cell is attached to the cold plate of a two-stage
closed-cycle He pulse tube cryocooler (Cryomech PT415) in the source
chamber at a pressure of 2 × 10− 6 Pa, heat-shielded by two layers of
gold-plated copper cylinders coated with activated charcoals, and is
stabilized to a temperature of 5.5 ± 0.2 K (Fig. 1). PbF molecules are
generated in the cell by the reaction of Pb plasma seeded in the He
carrier gas with a flow rate of 2 sccm and CF4 gas of 0.2 sccm, the former
of which is created by ablating a rotating Pb rod via using second har-
monic generation of a Continuum Surelite II (Model SLII-10) Nd:YAG
laser system (532 nm, 2 Hz repetition rate, pulse energy 25 mJ). Laser
output from continuous-wave (CW) ring dye lasers (Sirah, Matisse DS) is
frequency-doubled to ~ 280 nm and set to approximately 20mW/cm2 in
order to probe the B 2Σ+(υ’=0)← X1 2Π1/2(υ = 0) transition of PbF in the
range between 35689.9 cm− 1 and 35709.7 cm− 1. The fundamental
frequency of the laser is monitored using a HighFinesse WSU-30 wave-
meter with an absolute frequency accuracy of 30 MHz. The absorption
laser beam interacts with PbF molecules 15 mm downstream from the
ablation spot and is then probed by a photodetector (Thorlabs
PDA25K2). The absorption signal intensity (Iabs) is normalized in terms
of the absorption fraction c= 1 – Iabs/Iavg, where Iavg is the mean value of
the background level signal [68]. The LIF spectra are simultaneously
collected at two spots where the excitation laser beam (~280 nm) in-
tercepts the PbF molecules at 343 mm and 406 mm downstream from
the ablation source. The fluorescence signals at these two spots are
individually collected via a lens system composed of an aspherical lens
of 16 mm focal length and a plano-convex spherical lens of 100 mm focal
length in order to maximize the collection solid angle, prior to entering
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each photomultiplier tube (Hamamatsu H3695-10). The absorption and
fluorescence signals are eventually transmitted to the data acquisition
card (NI PCI-5122) synchronized to the Q-switch timing of the Nd:YAG
laser.

3. Spectral results and analysis

Fig. 2 illustrates the PbF absorption spectrum of the B 2Σ+(υ’=0) ←
X1 2Π1/2(υ = 0) transition in the BGC cell. Rotational branches of 208PbF
are labeled by Pee(J), Pff(J), Qfe(J), Qef(J), Ree(J) or Rff(J). Here P,Q and R
indicate J’ = J − 1, J and J + 1 transitions, while J’ and J are quantum
numbers of the total angular momentum excluding the nuclear spin for
the B and X1 states, respectively. The first and second “e/f” subscripts are
the conventional labeling of the J-dependent parity of ro-vibronic
wavefunctions for the upper and lower energy levels. For an S = 1/2
state (S is the total electron spin), the “e/f” parity is determined by the
sign of the product qχ = ps(− 1)J− 1/2, where ps = ±1 is the parity with
respect to all coordinates excluding the nuclear spin [62,69,70]. The
preliminary fitting of the absorption spectrum is obtained by the
incorporating X1 (υ = 0) and B (υ’=0) energy level structures [56,63],
and six rotational branches of the 208PbF isotopologue have been further
identified (Fig. 2). We have also observed the absorption spectra of
206PbF and 207PbF, which are intertwined with those of 208PbF and
prohibit us from identifying hyperfine-structure-resolved transitions due
to Doppler broadening [39,68,71].

Fig. 3(a) illustrates the LIF spectrum of the B 2Σ+(υ’=0) ← X1 2Π1/2(υ
= 0) transition obtained in the range between 35689.9 and 35709.7
cm− 1. In order to assign the partially-resolved hyperfine structures, we
adopt the multi-peak least-squares fitting to determine central frequency
of each individual line. As indicated in Fig. 3(b), the hyperfine manifold
in 208PbF (J= 3.5) can be assigned to B(J’ = 3.5, f, F1′= 4)← X1(J= 3.5,
e, F1 = 4), B(J’ = 3.5, f, F1′= 3) ← X1(J= 3.5, e, F1= 3), B(J’ = 4.5, e, F1′
= 5)← X1(J= 3.5, e, F1= 4) and B(J’ = 4.5, e, F1′= 4)← X1(J= 3.5, e, F1
= 3) transitions, denoted asQfe,4-4(3.5),Qfe,3-3(3.5), Ree,5-4(3.5) and Ree,4-
3(3.5), respectively. In Fig. 3(c), we measured two fluorescence profiles
of the Qef(0.5) transition at 35696.7054 cm− 1 simultaneously, which
were recorded at 343 mm and 406 mm separately downstream from the
ablation spot. The forward velocity of the PbF molecular beam can
therefore be derived from v = ΔL/Δt [72], where ΔL is the distance
between the two LIF detection spots, and Δt is the time interval between
the peaks of two profiles. This relation is accurate since molecules travel
at a distance significantly greater than the cell’s length. To ensure a
relatively strong fluorescence signal, we maintained the He and CF4 flow
rates at 2 sccm and 0.2 sccm, and set the ablation laser pulse energy to be

15.6 mJ. Under these experimental conditions, the average forward
velocity of PbF molecules is determined to be 223 ± 17 m/s, which is
close to previously-reported velocities of other buffer-gas-cooled mo-
lecular beams such as SrF [73] and BaF [74].

It shall be noticed that the LIF spectrum exhibits both broader
spectral range and better resolved transition lines than the absorption
spectrum. The average linewidth in the LIF spectrum is estimated to be
120 MHz, leading to a rotational temperature of 5.6 K [39], which
makes the assignment of hyperfine transitions in the LIF spectrum more
accessible than that in the absorption spectrum. On the other hand, the
rotational temperature of the molecular beam was determined to be
about 5 K by reproducing the relative transition intensities of the LIF
spectrum [68]. The proximity of these two temperatures indicates that
the molecular beam is highly concentrated in the LIF detection region,
ensuring sufficient PbF molecules when reaching the detection region of
the eEDM measurement.

The fluorescence intensity at the 343-mm spot is about four times
stronger than that at the 406-mm spot when both LIF excitation laser
beams are introduced. However, the latter one will increase to the same
magnitude if we block the excitation laser beam at the 343-mm spot
(Fig. 3(c)). This phenomenon implies that we produce a cryogenic mo-
lecular beam of good convergence, and can be well explained by the
population decay to intermediate states following the laser excitation.
The radiative lifetimes of the intermediate A 2Σ+ (υ = 0, 1) and X2 2Π3/2
(υ = 0) states are τA(υ = 0, 1)= 5.0± 0.3 μs [66] and τX2(υ = 0)= 370 ±

40 μs [58]. In addition, vibrational and rotational levels of the X1 state
can host the population that decays from the B state. Therefore, the
intensity difference between the LIF signals of two downstream spots is
attributed to that, only a small fraction of molecules excited from X1 to B
at the 343-mm spot decays back to the original ground levels when PbF
molecules arrive at the 406-mm spot after the flight time of 283 μs.

We now focus on the interpretation of the LIF spectrum of PbF
molecules, in which 81, 66, and 24 hyperfine-structure-resolved spectral
lines of 208PbF, 207PbF, and 206PbF from 35689.9 to 35709.7 cm− 1 have
been identified and further assigned. The hyperfine-structure-resolved
rotational distribution of the 208PbF isotopologue is indicated in Fig. 3
(a), while all observed transitions along with their residuals between
observed and calculated frequencies, are compiled in Tables 1 and 2. We
designate these lines of the B 2Σ+(υ’=0)← X1 2Π1/2(υ = 0) transition in a
similar way described in Ref.[62]. Transitions of 206PbF and 208PbF
isotopologues, which have net zero nuclear spin from Pb, are denoted as
ΔJq’χ’qχ, F1′-F1(J). Here O, P, Q, R and S indicate ΔJ = J’ – J = − 2, − 1, 0, 1
and 2, respectively. The subscript q’χ’ or qχ is the J-dependent parity as
described before, while F1′ or F1 represents the B-state or X1-state total

Fig. 1. Experimental schematic of buffer-gas cooling (BGC) apparatus for the measurement of the direct absorption and LIF spectroscopy of PbF molecules.
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Fig. 2. The absorption spectrum of the B 2Σ+(υ’=0) ← X1 2Π1/2(υ = 0) transition of PbF in the BGC cell. Ground-state J values of different rotational branches of
208PbF are labeled in color. The inset exemplifies the Qef(0.5) transition at 35696.70913(5) cm− 1, which is fitted in a Gaussian profile with the full width at half
maximum (FWHM) of 221 MHz.

Fig. 3. (a) The laser-induced fluorescence (LIF) spectrum of the B 2Σ+(υ’=0) ← X1 2Π1/2(υ = 0) transition of PbF. Ground-state J values of different rotational
branches of 208PbF are labeled in color. (b) The experimental hyperfine manifold in 208PbF (J = 3.5) (dotted) and its assignment using the multi-peak least-squares
fitting method (solid). (c) The fluorescence profiles of the Qef(0.5) transition recorded at 343 mm and 406 mm downstream from the ablation spot separately. The
fluorescence profile in the inset indicates the signal at the 406-mm spot when no LIF excitation laser at the 343-mm spot is introduced.
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angular momentum quantum number. For transitions of the 207PbF
isotopologue, we need to consider the 207Pb nuclear spin (1/2) in the
designation to account for its hyperfine structures. These transitions are
then denoted asΔJq’χ’qχ, F1′-F1, F2′-F2 (J), where F2′or F2 represents the good
quantum number of the total angular momentum for the B or X1 state
including both nuclear spins of Pb and F.

4. Discussion

We treat the X1 2Π1/2 energy level structure in the Hund’s case (a)
basis set, and adopt its spin-rotational and hyperfine interaction Ham-
iltonians from Ref.[63]. For the B 2Σ+ state of PbF, the Hund’s case (b)
coupling scheme is employed. The electron spin angular momentum S is

Table 1
The hyperfine-structure-resolved transitions in B 2Σ+(υ’=0) ← X1 2Π1/2(υ = 0) of 208PbF by LIF spectroscopy. The residuals between observed and calculated transition
frequencies are presented in the parentheses of observed frequency values (Obs.).

Label Obs. (cm¡1) Label Obs. (cm¡1) Label Obs. (cm¡1)

Pee,12-13(12.5) 35690.09850(− 46) Pff,7-8(8.5) 35696.81664(− 51) Ree,7-6(5.5) 35698.64045(− 39)
Pee,11-12(12.5) 35690.10226(− 28) Pff,8-9(8.5) 35696.82040(27) Ree,6-5(5.5) 35698.64426(− 48)
Pee,8-9(8.5) 35691.63731(20) Qef,8-8(8.5) 35696.83875(2) Ree,8-7(6.5) 35699.07149(4)
Pee,7-8(8.5) 35691.64109(28) Qef,9-9(8.5) 35696.84449(89) Ree,7-6(6.5) 35699.07586(59)
Pee,7-8(7.5) 35692.11833(− 4) Pff,8-9(9.5) 35697.00396(− 73) Qfe,8-8(7.5) 35699.51742(22)
Pee,6-7(7.5) 35692.12264(52) Pff,9-10(9.5) 35697.00704(− 66) Qfe,7-7(7.5) 35699.52308(24)
Pee,6-7(6.5) 35692.63760(− 71) Qfe,1-1(0.5) 35697.06105(− 61) Ree,9-8(7.5) 35699.53976(− 92)
Pee,5-6(6.5) 35692.64156(− 56) Qfe,0-1(0.5) 35697.06229(29) Ree,8-7(7.5) 35699.54443(0)
Pee,5-6(5.5) 35693.19593(− 98) Ree,2-1(0.5) 35697.06631(− 58) Rff,3-2(2.5) 35699.96360(− 11)
Pee,4-5(5.5) 35693.20013(− 69) Qfe,1-0(0.5) 35697.07099(− 92) Rff,4-3(2.5) 35699.96635(30)
Pee,4-5(4.5) 35693.79466(47) Ree,1-0(0.5) 35697.07520(− 100) Qfe,9-9(8.5) 35700.02262(22)
Pee,3-4(4.5) 35693.79908(85) Qfe,2-2(1.5) 35697.29688(12) Qfe,8-8(8.5) 35700.02848(50)
Pee,3-4(3.5) 35694.43106(94) Ree,2-1(1.5) 35697.30933(− 58) Qfe,10-10(9.5) 35700.56646(25)
Pee,2-3(3.5) 35694.43504(68) Qfe,3-3(2.5) 35697.57043(9) Qfe,9-9(9.5) 35700.57256(81)
Pee,2-3(2.5) 35695.10534(63) Qfe,2-2(2.5) 35697.57679(5) Ree,11-10(9.5) 35700.59586(91)
Pee,1-2(2.5) 35695.11045(114) Ree,4-3(2.5) 35697.58072(4) Ree,10-9(9.5) 35700.59878(17)
Pee,1-2(1.5) 35695.81829(32) Ree,3-2(2.5) 35697.58496(− 31) Rff,4-3(3.5) 35700.90893(31)
Pee,0-1(1.5) 35695.82188(50) Qfe,4-4(3.5) 35697.88310(60) Rff,5-4(3.5) 35700.91183(63)
Pee,1-1(1.5) 35695.82464(33) Qfe,3-3(3.5) 35697.88923(65) Qfe,10-10(10.5) 35701.15511(98)
Pff,4-5(5.5) 35696.48615(− 27) Ree,5-4(3.5) 35697.89606(60) Rff,5-4(4.5) 35701.89159(− 58)
Pff,5-6(5.5) 35696.48856(− 68) Ree,4-3(3.5) 35697.89984(15) Rff,6-5(4.5) 35701.89509(20)
Qef,5-5(5.5) 35696.49959(− 54) Qfe,5-5(4.5) 35698.23331(4) Qfe,13-13(12.5) 35702.42881(− 44)
Qef,3-3(2.5) 35696.51279(− 88) Qfe,4-4(4.5) 35698.23966(50) Qfe,12-12(12.5) 35702.43403(− 69)
Qef,6-6(6.5) 35696.57406(− 28) Ree,6-5(4.5) 35698.24891(7) Ree,14-13(12.5) 35702.46610(21)
Qef,7-7(6.5) 35696.57870(− 41) Ree,5-4(4.5) 35698.25347(59) Ree,13-12(12.5) 35702.46978(30)
Qef,7-7(7.5) 35696.68679(− 42) Qfe,6-6(5.5) 35698.62135(− 129) Rff,6-5(5.5) 35702.91321(− 111)
Qef,8-8(7.5) 35696.69159(− 44) Qfe,5-5(5.5) 35698.62810(− 32) Rff,7-6(5.5) 35702.91830(117)

Table 2
The hyperfine-structure-resolved transitions in B 2Σ+(υ’=0) ← X1 2Π1/2(υ = 0) of 206PbF and 207PbF by LIF spectroscopy. The residuals between observed and
calculated transition frequencies are presented in the parentheses of observed frequency values (Obs.).

Label Obs. (cm¡1) Label Obs. (cm¡1) Label Obs. (cm¡1)

Pee,12-13(12.5) 35690.05475(40) Pee,1-2(2.5) 35695.06728(− 24) Ree,6-5(4.5) 35698.20946(− 39)
Pee,11-12(12.5) 35690.05808(− 2) Pee,1-2(1.5) 35695.77668(6) Ree,5-4(4.5) 35698.21391(− 12)
Pee,11-12(11.5) 35690.38067(− 24) Ree,4-3(2.5) 35697.54188(94) Qfe,7-7(7.5) 35699.48487(2)
Pee,7-8(8.5) 35691.59670(− 17) Ree,3-2(2.5) 35697.54607(41) Ree,9-8(7.5) 35699.50311(− 6)
Pee,7-8(7.5) 35692.07486(33) Qfe,4-4(3.5) 35697.84336(31) Ree,8-7(7.5) 35699.50739(31)
Pee,3-4(4.5) 35693.75634(80) Qfe,3-3(3.5) 35697.84921(29) Ree,10-9(8.5) 35700.01136(− 23)
Pee,2-3(3.5) 35694.39192(− 18) Ree,5-4(3.5) 35697.85609(2) Ree,9-8(8.5) 35700.01534(− 12)
Pee,2-3(2.5) 35695.06262(− 19) Ree,4-3(3.5) 35697.85998(− 46) Rff,5-4(3.5) 35700.87373(− 53)
Ofe,6-8,6.5-7.5(7.5) 35691.90055(55) Pee,1-2,0.5-1.5(1.5) 35695.61456(− 96) Ree,4-3,3.5-2.5(3.5) 35697.68947(24)
Ofe,4-6,4.5-5.5(6.5) 35692.42622 (− 43) Pee,1-1,0.5-0.5(1.5) 35695.62079(− 91) Ree,5-4,4.5-4.5(3.5) 35697.80082(21)
Pee,6-7,5.5-6.5(6.5) 35692.58201 (− 6) Pee,1-2,1.5-2.5(1.5) 35695.88765(− 4) Ree,4-3,3.5-3.5(3.5) 35697.80569(5)
Pee,5-6,4.5-5.5(6.5) 35692.58706 (39) Qef,4-4,3.5-4.5(3.5) 35696.25566(− 17) Qfe,4-4,3.5-3.5(3.5) 35697.83708(− 50)
Pee,6-7,6.5-7.5(6.5) 35692.70740 (− 71) Pff,5-6,5.5-6.5(5.5) 35696.28575(− 73) Qfe,5-5,5.5-4.5(4.5) 35698.03491(− 48)
Pee,5-6,5.5-6.5(6.5) 35692.71160(− 37) Qef,2-2,1.5-2.5(2.5) 35696.29525(35) Qfe,4-4,4.5-3.5(4.5) 35698.04024(− 20)
Pee,5-6,4.5-5.5(5.5) 35692.98171(− 68) Qef,3-3,2.5-3.5(2.5) 35696.29881(75) Qfe,6-6,6.5-5.5(5.5) 35698.42634(70)
Pee,4-5,3.5-4.5(5.5) 35692.98646(− 83) Qef,5-5,4.5-4.5(5.5) 35696.56702(14) Qfe,5-5,5.5-4.5(5.5) 35698.43123(66)
Ofe,4-6,4.5-5.5(5.5) 35693.14184(− 59) Qef,6-6,5.5-5.5(5.5) 35696.57053(− 13) Qfe,6-6,6.5-6.5(5.5) 35698.54439(57)
Ofe,3-5,3.5-4.5(5.5) 35693.14664(− 45) Pff,8-9,7.5-8.5(8.5) 35696.89318(− 31) Qfe,5-5,5.5-5.5(5.5) 35698.54948(81)
Pee,4-5,3.5-4.5(4.5) 35693.58181(5) Qfe,0-1,0.5-1.5(0.5) 35697.13173(− 47) Sef,4-2,3.5-2.5(2.5) 35699.75892(1)
Ofe,3-5,3.5-4.5(4.5) 35693.74174(13) Qfe,1-1,1.5-1.5(0.5) 35697.13312(14) Sef,5-3,4.5-3.5(2.5) 35699.76229(25)
Ofe,2-4,2.5-3.5(4.5) 35693.74611(− 26) Ree,2-1,2.5-1.5(0.5) 35697.13539(− 27) Qfe,10-10,10.5-9.5(9.5) 35700.37396(31)
Pee,4-5,4.5-5.5(4.5) 35693.86483(62) Qfe,1-0,0.5-0.5(0.5) 35697.13725(44) Qfe,9-9,9.5-8.5(9.5) 35700.37817(− 24)
Pee,3-4,3.5-4.5(4.5) 35693.86860(39) Qfe,0-0,0.5-0.5(0.5) 35697.13936(74) Rff,6-5,6.5-5.5(5.5) 35702.71584(16)
Pee,3-4,2.5-3.5(3.5) 35694.21943(− 61) Ree,1-0,1.5-0.5(0.5) 35697.14135(10) Rff,7-6,7.5-6.5(5.5) 35702.71929(− 2)
Pee,2-3,1.5-2.5(3.5) 35694.22527(5) Ree,4-3,3.5-3.5(2.5) 35697.48637(− 37) Rff,7-6,7.5-6.5(6.5) 35703.77820(− 2)
Pee,3-4,3.5-4.5(3.5) 35694.50069(50) Ree,3-2,2.5-2.5(2.5) 35697.49164(− 30) Rff,8-7,8.5-7.5(6.5) 35703.78176(− 14)
Pee,2-3,2.5-3.5(3.5) 35694.50391(− 40) Qfe,3-3,2.5-2.5(2.5) 35697.52677(18) Rff,8-7,8.5-7.5(7.5) 35704.87901(− 28)
Pee,2-3,1.5-2.5(2.5) 35694.89771(16) Qfe,3-3,3.5-3.5(2.5) 35697.64707(47) Rff,9-8,9.5-8.5(7.5) 35704.88316(14)
Pee,1-2,0.5-1.5(2.5) 35694.90377(74) Ree,3-2,3.5-2.5(2.5) 35697.65558(− 37) Rff,10-9,9.5-8.5(9.5) 35707.46601(− 24)
Pee,1-2,1.5-2.5(2.5) 35695.17978(73) Ree,5-4,4.5-3.5(3.5) 35697.68465(63) Rff,11-10,10.5-9.5(9.5) 35707.46954(17)
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coupled to the spinless angular momentum N to form the total angular
momentum J ¼ N þ S. The spin-rotational Hamiltonian of the B 2Σ+

state can then be expressed as [75]

Hsr,B = BN2 − DN4+ γN • S. (1)

Here, B is the rotational constant, D is the centrifugal distortion con-
stant, and γ is the spin-rotation constant. In the Hund’s case (b) basis set,
the excited-state energy levels can be expressed as

Esr, B = BN(N + 1) − D[N(N+ 1) ]2

+γ( − 1)N+J+S
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
S(S+ 1)(2S+ 1)

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N(N+ 1)(2N+ 1)

√

×

{
S N J

N S 1

}

+ T00

(2)

In addition, the hyperfine interaction HamiltonianHhfs,B can be given as
[76]

Hhfs,B = bF1T1 (̂I)⋅T1(Ŝ) + c1T1q=0 (̂I)T
1
q=0(Ŝ)

+bF2T1 (̂I)⋅T1(Ŝ) + c2T1q=0 (̂I)T
1
q=0(Ŝ).

(3)

Here, the physically significant Fermi contact interaction constant bF =
b + c/3 with b and c representing the hyperfine constant and dipo-
le–dipole interaction constant in Frosch and Foley parameters, while the
nuclear spin-rotational constant CN is generally negligible. The energy
level structures of X1 2Π1/2(υ = 0) and B 2Σ+(υ’=0) can then be solved by
analyzing the corresponding spin-rotational and hyperfine interaction
Hamiltonians, based on preliminary ground- and excited-state molecu-
lar constants [63,64,77], followed by the tentative assignment of tran-
sitions in different rotational branches. To further optimize molecular
constants for B 2Σ+(υ’=0), an automatic fitting of molecular transitions
was performed using the PGOPHER program [78]. We fit the experi-
mental transitions of 206PbF, 207PbF, and 208PbF by fixing the X1-state
parameters to values reported in the ground-state microwave spectros-
copy study by Mawhorter et al.[63], in order to obtain the B-state mo-
lecular constants as presented in Table 3. The fitted Frosch and Foley
parameters b(19F) and c(19F) for the three PbF isotopologues are found to
be 0.00189(26) cm− 1 and 0.0031(13) cm− 1 (208PbF), 0.00163(53) cm− 1

and 0.0022(13) cm− 1 (207PbF), and 0.00155(31) cm− 1 and 0.0033(17)
cm− 1 (206PbF), respectively. For the B 2Σ+ state of 207PbF, b(207Pb) and c
(207Pb) are determined to be 0.15980(11) cm− 1 and 0.00204(31) cm− 1.
Although the hyperfine interaction between the nuclear and electronic
magnetic moments is often described in the Frosch and Foley parame-
ters, it shall provide analytical convenience to express the hyperfine
interaction terms in the molecular body-fixed frame. For the B 2Σ+ state,
hyperfine constants A‖ and A⊥ are connected to Frosch and Foley pa-
rameters as A‖ = b + c and A⊥ = b, which have been converted in
Table 3. Here, the hyperfine interaction parameters due to the 19F nu-
cleus (A⊥ and A‖) of B 2Σ+(υ’=0) state are reported for the first time and
those due to the 207Pb nucleus (A⊥ and A‖) have been also updated,
showing improved accuracy compared with reported values in the su-
personic molecular beam experiment of PbF [64] due to better spectral
linewidth of the BGC experiment.

5. Conclusions

To summarize, we demonstrated the production of a cryogenic PbF
molecular beam in the BGC apparatus, and carried out high-resolution
laser spectroscopy measurements in its B 2Σ+(υ’=0) ← X1 2Π1/2(υ = 0)
transition, including both direct absorption and LIF spectroscopy. The
Doppler-broadened absorption spectrum exhibits the transition profile
of about 221 MHz linewidth, however, LIF spectrum of the cryogenic
PbF molecular beam demonstrates its central forward velocity of 223 ±

17 m/s and reveal broader spectral range as well as better resolved
transition lines. In the LIF spectrum of B 2Σ+(υ’=0) ← X1 2Π1/2(υ = 0),

81, 66 and 24 hyperfine-structure-resolved spectral lines with the line-
width of 120 MHz and a frequency accuracy of 40 MHz have been
assigned, respectively, for 208PbF, 207PbF and 206PbF molecules. The
hyperfine constants due to the 19F nucleus of the B 2Σ+(υ’=0) state are
reported for the first time, and those due to the 207Pb nucleus have been
also updated, exhibiting better accuracy owing to the narrower line-
width of the BGC technique. Such a cryogenic molecular beam of PbF in
association with its hyperfine-structure-resolved spectral atlas in B
2Σ+(υ’=0)← X1 2Π1/2(υ = 0) will be essential in developing the sensitive
detection schemes of the eEDMmeasurement. The slow forward velocity
facilitates longer coherence time and improved sensitivity for the eEDM
phase detection, and enables the feasibility of Stark deceleration and
laser-cooling. In addition, the buffer-gas-cooled molecular beam ex-
hibits lower rotational temperature such that the preparation of the
eEDM superposition state that requires higher population in the J = 1/2
ground state can be more readily available. Our narrower spectral
linewidth can not only reveal hyperfine-structure-resolved molecular
transitions with better frequency measurement, but also enlighten the
detection of the A 2Σ+(υ’=0) ← X1 2Π1/2(υ = 0) transition within which
the excited A-state has a much longer radiative lifetime of 5 μs compared
to the B 2Σ+ state value of 2 ns [60,66]. Our demonstrated buffer-gas-
cooled PbF molecular beam source as well as its spectroscopic charac-
terization in the B 2Σ+(υ’=0) ← X1 2Π1/2(υ = 0) transition will eventu-
ally contribute to the spectroscopic detection schemes of precision
measurement of eEDM using PbF molecules.
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Table 3
The rotational and hyperfine contants (cm− 1) for the B 2Σ+(υ’=0) state of PbF.

Parameter 206PbF 207PbF 208PbF

B 0.2475529(22) 0.2474436(15) 0.2473434(43)
0.2475375(16)a 0.2474495(76)a 0.2473225(57)a

107 × D 1.84(11) 1.88(23) 1.83(25)
1.475(23)a 1.619(4)a 1.617(15)a

γ 0.002698(33) 0.002609(68) 0.002641(21)
0.002716(22)a 0.002732(13)a 0.002653(16)a

A⊥(19F) 0.00155(31) 0.00163(53) 0.00189(26)
A‖(19F) 0.0048(20) 0.0038(18) 0.0050(16)
A⊥(207Pb) 0.15980(11)

0.1584(17)a

A‖(207Pb) 0.16184(42)
0.1644(21)a

T00 31558.90815(11) 31558.923640(71) 31558.95620(13)

a Converted from Reference [64].
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