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Directed gas phase formation of silicon dioxide and
implications for the formation of interstellar
silicates
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Interstellar silicates play a key role in star formation and in the origin of solar systems, but

their synthetic routes have remained largely elusive so far. Here we demonstrate in a

combined crossed molecular beam and computational study that silicon dioxide (SiO2) along

with silicon monoxide (SiO) can be synthesized via the reaction of the silylidyne radical (SiH)

with molecular oxygen (O2) under single collision conditions. This mechanism may provide a

low-temperature path—in addition to high-temperature routes to silicon oxides in circum-

stellar envelopes—possibly enabling the formation and growth of silicates in the interstellar

medium necessary to offset the fast silicate destruction.
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The origin of interstellar silicate grains—nanoparticles
consisting primarily of olivine-type ((Mg,Fe)2SiO4)
refractory minerals—has remained a controversial topic for

more than half a century, since interstellar silicates are faster
destroyed by sputtering than formed during the late stages of
stellar evolution through nucleation in circumstellar envelopes of
oxygen-rich Asymptotic Giant Branch (AGB) and Red Supergiant
(RSG) stars1–5. These nanoparticles have been associated with the
prebiotic evolution of the interstellar medium (ISM) through the
synthesis of molecular building blocks of life such as amino acids
and sugars on their ice-coated surfaces by ionizing radiation6.
Interstellar silicates also play a critical role in star formation and
in the origin of solar systems contributing to the radiation balance
and acting as a molecular feedstock, both through the formation
of complex organics through the release of icy mantles that cover
them and through disruption of grains in interstellar shocks3,7. In
molecular clouds, they absorb light and hence shield complex
organic molecules (COMs)—organics containing carbon, hydro-
gen, nitrogen, and oxygen like glycolaldehyde (HCOCH2OH) and
formamide (HCONH2)—from the destructive interstellar ultra-
violet radiation field8. Therefore, the elucidation of the origin of
interstellar silicates is of vital importance to the astrochemistry,
astrobiology, and astrophysics communities to eventually
understand the fundamental processes that create a visible galaxy
including our own.

A crucial point of concern is that the mass of dust ejected
during the late stages of stellar evolution is produced at a rate that
is significantly slower than the dust destruction time in the ISM,
implying that grains also form in the lower density environment
of the ISM5,9–14. Current astrochemical models of circumstellar
envelopes propose that dust formation in AGB stars is driven
eventually by clustering and reactions of silicon oxides along with
magnesium-type and iron-type oxides2,15–20. There does appear
to be, however, a severe discrepancy between the formation rates
of silicate grains in circumstellar envelopes of 3 × 109 years and
their destruction via sputtering once dispersed into the ISM that
limits their lifetime to only a few 108 years5,21–23. This dis-
crepancy24 may eventually be resolved through a better under-
standing of the processes of dust destruction5,23, but it remains
possible that significant formation of dust needs to occur in the
interstellar as opposed to the circumstellar medium12–15. Indeed,
silicate grains may grow in the ISM by accreting and incorpor-
ating silicon oxide molecules25,26.

Here we show that the silicon dioxide molecule (SiO2) along
with silicon monoxide (SiO) can be efficiently formed via a low-
temperature gas phase chemistry even at 10 K. We report the
results of a combined crossed molecular beam study and of
electronic structure calculations on the reaction of the D1-
silylidyne radical (SiD; X2Π) with molecular oxygen (O2, X3Σg

−)
leading to the formation of SiO2 and SiO through a barrierless
reaction27. This system represents a proxy for the reaction of the
silylidyne radical (SiH) generated via photolysis of silane (SiH4)
28–30 with O2 to synthesize silicon oxides via a single collision
event. In the ISM, the reaction of SiH with O2 may represent a
potential pathway to SiO2 and silicon oxide formation in those
molecular clouds, where gas phase chemistry follows ice mantle
sublimation; these silicon oxides might drive an exothermic
chemistry that possibly produces larger silicon oxides25,31 leading
ultimately to silicates at low temperatures.

Results
Crossed molecular beam studies in the laboratory frame. The
reactive scattering experiments were performed using a crossed
molecular beam apparatus (Methods). We monitored the scat-
tering signal at mass-to-charge ratio (m/z) 62 (28SiDO2

+), 60

(28SiO2
+), and 44 (28SiO+). No signal was observed at m/z 62,

suggesting that under single collision conditions the lifetime of
the 28SiDO2 adduct is shorter than its flight time to the electron-
impact ionizer. Reactive scattering signal was detected at m/z 60
(28SiO2

+) (Fig. 1). The scattering signal is relatively weak, and at
each angle up to 6 × 106 time-of-flight (TOF) spectra (60 h col-
lection time) had to be averaged to obtain a reasonable signal-to-
noise ratio. Signal detection at m/z 60 alone provides conclusive
evidence on the formation of a molecule with the formula 28SiO2

via a single collision event of two neutral reactants. Taking into
account the data accumulation time, the signal-to-noise ratio
obtained at m/z 60 and the abundances of naturally occurring
silicon isotopes of 30Si(3.10 %), 29Si (4.67 %), and 28Si(92.23 %),
we would not expect—as confirmed experimentally—any reactive
scattering signal at m/z 62 (30SiO2

+). Finally, the background
counts at m/z 44 originating from singly ionized carbon dioxide
(CO2) in the detector precludes an identification of any reactive
scattering signal at m/z 44 (28SiO+). To summarize, the labora-
tory data indicate that a molecule with the formula 28SiO2

(hereafter: SiO2) along with atomic deuterium is formed under
single collision conditions in the reaction of the SiD radical with
O2.

Crossed molecular beam studies in the center-of-mass frame.
We transformed the experimental data from the laboratory to the
center-of-mass (CM) reference frame32 to gain information on
the underlying reaction dynamics, which yields the CM transla-
tional energy flux distribution P(ET) and the CM angular flux
distribution T(θ) as depicted in Fig. 2. Best fits of the laboratory
data are achieved with a single-channel fit forming products with
a mass combination of 60 amu (SiO2) and 2 amu (D) (Figs. 1 and
2). A detailed inspection of the CM functions affords crucial
information on the pertinent reaction channel(s) and dynamics.
First, P(ET) assists in the identification of the product isomer(s).
For the reaction products formed without internal excitation, the
high energy cutoff of 493 ± 57 kJ mol−1 in P(ET) denotes the sum
of the absolute value of the reaction exothermicity plus the col-
lision energy Ec (33.2 ± 2.0 kJ mol−1). A subtraction of the colli-
sion energy reveals that the reaction is highly exothermic with the
energy of -460 ± 59 kJ mol−1. This finding agrees nicely with our
computed value of -441 ± 5 kJ mol−1 (Fig. 3) and the energetics
obtained from NIST Webbook (-464 kJ mol−1)33 to form the
linear SiO2 molecule (l-SiO2) along with atomic hydrogen (H).
This shows for the very first time that a SiO2 molecule is observed
in the gas phase as a result of a reaction between two neutral
species under controlled experimental conditions. Previously,
Ahmed et al. generated SiO2 via laser ablation of silicon (Si) and
two successive oxygen abstractions from the seeding and reactant
gas—CO2;34 Wang et al. formed gas phase SiO2 through SiO2

−

electron photodetachment35. A complex forming reaction
mechanism is evident from T(θ) which depicts the flux over the
complete angular range36. This distribution reveals further a
forward-backward symmetry proposing that the lifetime of the
decomposing intermediate is longer than its rotational period37.
Alternatively, a ‘symmetric’ reaction intermediate can account for
these findings by emitting a deuterium atom with equal prob-
abilities into θ and π–θ38.

Electronic structure calculations and reaction mechanism. We
combined the experimental findings with electronic structure
calculations on the reaction of SiH with O2 to elucidate the
underlying dynamics (Fig. 3). These calculations were performed
at a level of theory high enough to predict relative energies of the
transition states and local minima as well as reaction energies
within 5 kJ mol−1 (Methods). Based on the difference in zero
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Fig. 1 Laboratory angular distribution and the associated time-of-flight spectra. Laboratory angular distribution at mass-to-charge ratio of 60 (SiO2
+)

recorded in the reaction of the D1-silylidyne radical with molecular oxygen (a), and the time-of-flight spectra recorded at distinct laboratory angles overlaid
with the best fits (b). The solid circles with their error bars indicate the normalized experimental distribution with ±1σ uncertainty (s.d. of the integrals of
the time-of-flight spectra for the respective angle), and the open circles indicate the experimental data points of the time-of-flight spectra. The red lines
represent the best fits obtained from the optimized center-of-mass (CM) functions, as depicted in Fig. 2
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Fig. 2 Center-of-Mass (CM) distributions and the associated flux contour map. CM translational energy flux distribution (a), CM angular flux distribution
(b), and the top view of their corresponding flux contour map (c) leading to the formation of silicon dioxide plus atomic deuterium in the reaction of D1-
silylidyne with molecular oxygen. Shaded areas indicate the error limits of the best fits accounting for the uncertainties of the laboratory angular
distribution and TOF spectra, with the red solid lines defining the best-fit functions. The flux contour map represents the flux intensity of the
reactive scattering products as a function of the CM scattering angle (θ) and product velocity (u). The color bar indicates the flux gradient from high (H)
intensity to low (L) intensity. Colors of the atoms: silicon (purple), oxygen (red), and deuterium (light blue)
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point vibrational energies by replacing hydrogen (H) with deu-
terium (D) in SiH, the relative energy of SiO2 plus D is 3 kJ mol−1

higher than that of non-deuterated reactants, whereas for the
intermediates and transition states in the SiD-O2 and SiH-O2

systems, which maintain the Si-H(D) bond intact, relative ener-
gies are within 1 to 2 kJ mol−1. The computations verify the
experimental results of an indirect reaction mechanism. Here, the
reaction is initiated by a barrierless addition of SiH with its
radical center to O2 at a single oxygen atom yielding a Cs sym-
metric cis-HSiOO intermediate [i1] on the doublet surface. The
barrierless addition was verified by a careful examination of the
entrance channel, which indicates that the potential energy of the
system monotonically decreases as SiH approaches O2. The col-
lision complex [i1] is only metastable and undergoes a rapid
atomic oxygen migration to the silicon atom forming the C2v

symmetric HSiO2 (2B1) intermediate [i2], which is strongly
bound by 538 kJ mol−1 with respect to the separated reactants.
This intermediate can either undergo unimolecular decomposi-
tion via a loose exit transition state by H loss forming SiO2 (1Σg+)
or isomerize via hydrogen migration to trans-HOSiO (Cs, 2A’,
[i3]), which in turn undergoes trans-cis isomerization to cis-
HOSiO (Cs, 2A’, [i4]). Multireference CASPT2 calculations with
full active spaces (17,13) corroborate the conclusions that the
reversed addition reaction of H to SiO2 is barrierless. The trans-
HOSiO and cis-HOSiO intermediates are isovalent to the well-
known trans-HOCO and cis-HOCO intermediates, reside in deep
potential energy wells of 685 and 688 kJ mol−1, and can undergo
facile Si-O bond cleavages through loose exit transition states
yielding a linear van-der-Waals complex between the hydroxyl
radical (OH) and SiO [i5], in which OH is hydrogen bridge
bonded to the oxygen atom of SiO. This complex is bound by 23
kJ mol−1 with respect to the separated products. Overall, the

computations revealed two competing exit channels: the forma-
tion of SiO2 plus H and SiO plus OH. With the exception of [i1],
the aforementioned energetics are within 13 kJ mol−1 when
compared with Schaefer’s study on the stationary points relevant
to the reaction of SiO with OH;39 Darling and Schlegel predicted
the existence of [i1], but their energetics, computed at the G2
level of theory, forecasted the energy difference between [i1] and
[i4] to be about 505 kJ mol−1 compared to 549 kJ mol−1 in our
system40. Finally, since our experimental setup could not probe
the SiO route, the branching ratios were determined computa-
tionally exploiting Rice–Ramsperger–Kassel–Marcus (RRKM)
theory (Methods). The relative yields of SiO2 and SiO were vir-
tually independent of the collision energy between 0 and 36 kJ
mol−1 and varied in the ranges of 49.5 ± 2.5 and 50.5 ± 2.5%. We
should note, however, that the energy content in the inter-
mediates [i1] to [i5] is so significant that the RRKM rate con-
stants are close to the applicability of the statistical theory.
Therefore, dynamical effects might affect the branching ratios,
but a 50–50% partition is reasonable given the closeness of the
reaction energies.

Discussion
Let us first address the barrierless character of the reaction of SiH
with O2. The initial addition step to [i1] has no barrier because it
represents an association of two species, each of them having at
least one unpaired electron, in this case a radical (SiH) and a
diradical (O2). During the association process two unpaired
electrons from the two interacting moieties form an electron pair
thus creating a new Si-O single bond. Such radical/(di)radical
reactions occur without barriers. While the complex [i1] is
formed, the total spin of the doublet/triplet pair is converted to a
doublet due to the formation of the extra electron pair. The
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calculated spin density distribution in [i1] shows that the
remaining unpaired electron in HSiOO is localized on the
terminal oxygen atom, which exhibits a spin density of 0.91
(Fig. 3). It is interesting to note that the related reactions of Si
with O2 (diradical/diradical) and singly ionized silicon (Si+) with
O2 (radical/diradical) are also barrierless41,42. However, these
reactions cannot produce SiO2 or singly ionized silicon dioxide
(SiO2

+) under single collision conditions as prevailing in the low
density ISM. Here, SiO2 and SiO2

+ represent highly exothermic
reaction intermediates residing in deep potential wells, and their
internal energy due to chemical activation has to be dissipated.
The energy dissipation may occur either via deactivation through
third-body collisions or via fragmentation to SiO plus O or singly
ionized silicon monoxide (SiO+) plus O, respectively. Whereas
third-body collisions prevent the dissociation of SiO2 when the
reaction of Si with O2 takes place in a 0.37 K superfluid helium
droplet43, the fragmentation channels take over at low pressures
where collision deactivations are inefficient. Indeed, the reaction
of Si with O2 is usually invoked as one of the main source of
SiO44. Crossed molecular beam studies of this system have firmly
established SiO plus O as the reaction products under nearly
zero-pressure conditions45 as corroborated by theoretical quasi-
classical trajectory calculations46. An alternative reaction leading
to the formation of SiO2 plus O, i.e., the reaction of SiO with O2,
which plays an important role in fabrication of silicon oxide films
at elevated temperatures47, is known to be endothermic by 28 kJ
mol−1 and has a barrier of at least 91 kJ mol−1 and hence cannot
occur in low-temperature interstellar environments48.

The SiH reaction with O2 is akin to reaction of the isovalent
methylidyne radical (CH) with O2, which is also known to be
barrierless and consequently very fast at the collisional kinetic
limit even at extremely low temperatures such as 13 K49. Theo-
retically, low-temperature rate coefficients for this system have
been evaluated using long-range transition state theory and the
calculations reproduced the experimental values within a factor of
two to three50. Here we exploited the same theoretical method to
compute rate coefficients for the SiH-O2 reaction and obtained
values slightly increasing from 3.1×10−10 cm3 molecule-1 s-1 at
10 K to 4.4×10−10 and 5.3×10−10 cm3 molecule-1 s-1 at 100 and
300 K, respectively, compared to an experimental value of 1.7×10
−10 cm3 molecule-1 s-1 at 298 K51. A comparison of the rate
coefficients at 13 K for the CH-O2 (1.5×10−10 cm3 molecule-1 s-1

(experiment) and 2.9×10−10 cm3 molecule-1 s-1 (theory)) and
SiH-O2 (3.2×10−10 cm3 molecule-1 s-1 (theory)) reveals that both
reactions should be nearly equally fast. The calculations also
demonstrate that the long-range SiH/O2 interaction is dominated
by dispersion forces, with small contributions from dipole (SiH)
—induced dipole (O2) and dipole (SiH)—quadrupole (O2)
interactions.

Having established the formation of SiO2 along with SiO under
single collision conditions in the laboratory and through elec-
tronic structure calculations, we now discuss potential astro-
chemical implications. It is essential to transfer these findings to
‘real’ extraterrestrial environments since all experiments con-
ducted under well-defined laboratory conditions can hardly
mimic the chemical complexity of the ISM, where both
neutral–neutral and ion–molecule reactions along with photo-
chemical processes occur simultaneously6,38,52. Our studies
indicate unambiguously that the reaction has no entrance barrier,
all barriers involved in the formation of the silicon oxides are well
below the energy of the separated reactants, and the overall
reactions to form the silicon oxides are exothermic. These find-
ings represent a crucial prerequisite for this reaction to be
important in low-temperature molecular clouds; any barrier
would block these reactions in low-temperature interstellar
environments. Therefore, our results can be universally applied to

any cold interstellar environment such as molecular clouds, where
ice mantles can be removed from grains, and where adequate
concentrations of SiH radicals and O2 exist.

In cold molecular clouds, O2 is difficult to detect. This is in part
due to the fact that this diatomic molecule is homopolar, and that
observations are best made from space platforms such as Her-
schel53. The former implies that large concentrations (or column
densities) are needed for detection, the latter that small telescope
diameters and large beam sizes dilute the signal intensity thus
making molecular oxygen difficult to detect even in sources such
as hot molecular cores. Hence, the recent detection of O2 toward
Orion and ρ Ophiuchi A is truly extraordinary53–56. Gas phase
abundances of O2 with respect to molecular hydrogen (H2) at the
order of 10−7–10−6 would be in good agreement with astro-
nomical observations53,57, however, they are still significantly
lower than the upper limit to the O2 abundance in interstellar ice.
Due to its non-polar nature, upper limits to the abundance of O2

in interstellar ice are difficult but its effect on the carbon mon-
oxide (CO) vibrational absorption band at 4.673 µm (2140 cm−1)
is consistent with ice mixtures in which O2 is comparable to or a
few times more abundant than CO57. Vandenbussche et al.
(1999) provided upper limits58 on the O2 ice abundance based on
the non-detection of its fundamental vibrational band in the solid
state, at 6.45 µm (1550 cm−1), as well as on observations of the
4.673 µm (2140 cm−1) CO band. Toward the protostar R CrA
IRS2, they find an upper limit of 50 % with respect to solid CO
and, in NGC7538 IRS9, an upper limit of 20 % to water ice which
has an estimated abundance of 10−4 with respect to H2. In
general, the few sources in which observations have been carried
out are consistent with upper limits to the O2 ice abundances in
the range 10−5–10−4 with respect to H2. This abundance is
consistent with O2 to water ratio (0.038) recently detected in
comet 67 P/Churyumov–Gerasimenko59. Indeed, Taquet et al.
argued that the high abundance of O2 as seen in this 67 P is of
interstellar origin60. Further, we should note that the abundance
of SiH depends on the removal of the ice mantles. Removal
provides a parent species (silane; SiH4) to the gas phase with
subsequent photodissociation producing SiH28–30, a molecule
with a very small dipole moment of only 0.12 Debye61. Gas phase
detection has therefore been difficult with only a tentative iden-
tification to date in Orion62. While multiple reaction pathways
can lead to SiO2, the neutral–neutral reaction of SiH with O2 has
a universal potential to synthesize SiO2 along with SiO in cold
molecular clouds when the fractional abundance of O2 in the gas
phase is sufficient. Both SiO2 and SiO—as derived from labora-
tory studies of barrier-less condensation of silicon oxides in
helium droplet experiments25,43 and theoretical chemistry cal-
culations that show reactions between these oxides produce larger
silicon oxides in exothermic chemistry16,17,31—may eventually
play a role in the formation and growth of interstellar silicates. It
should be noted that the elementary reactions leading to small
silicon oxides may also be relevant to the chemistry of silicon
oxide plasmas, such as those widely used in the semiconductor
industry for depositing thin film insulators in integrated circuits
like memory or processor chips63. During the Si and SiO2 che-
mical vapor deposition (CVD) processes, primary precursors
such as silane or disilane (Si2H6) undergo bond cleavage pro-
cesses with the fragments adsorbing on the surfaces of the sub-
strates, during which complex gas-phase and gas–surface
reactions are involved64. Layered films of silicon oxides can be
processed by mixing silane or disilane with O2 and dinitrogen
monoxide (N2O), for instance65. Here depositions at low tem-
peratures are preferred, since high-temperature instabilities on
the substrates can substantially reduce the film production
rates66. Plasma-enhanced CVD (PECVD) represents the main
processing route for silicon oxide film growth; here, a radio

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03172-5 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:774 | DOI: 10.1038/s41467-018-03172-5 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


frequency (RF) discharge supplies energy to initiate bond rupture
processes and hence to promote the chemical reaction67,68. Since
silicon hydride radical species such as SiHm and Si2Hn (m= 1–3,
n= 1–5) are generated as well, PECVD is extraordinarily
complex64,69. Therefore, it is vital to untangle the reaction
mechanisms from the fundamental, microscopic point of view.

Our combined crossed molecular beam and electronic struc-
ture calculations provide compelling evidence on the formation of
SiO2 along with SiO under single collision conditions. The
bimolecular neutral–neutral reaction of SiH with O2 represents a
single step mechanism to form two silicon oxides—SiO and SiO2.
In combination with astrochemical modeling, our study suggests
that silicon oxides may form not only in hot circumstellar
envelopes of oxygen-rich stars as thought previously, but also in
interstellar clouds via facile, barrierless reactions involving the
simplest silicon-bearing radical (SiH) and O2. These pathways
provide a population of silicon oxides, which can possibly provide
a basis for the regeneration of interstellar silicates thus leading us
closer to solving the paradox of the injection and destruction
timescales of silicates5,21–24. The ability of barrierless, exothermic
reactions between SiO and SiO2 to form larger silicon oxides such
as Si2O5 and Si3O5 suggests that such reactions31 may play a
central role in the process by which reformation of silicate grains
must occur in the ISM.

Although there is no detailed description to date of how silicate
dust grains might form in the ISM, silicon oxides are likely
involved. Therefore, the work reported here represents an
important step toward a systematic understanding of the funda-
mental chemical processes eventually leading to the formation of
silicate grains in the ISM. Since distinct types of interstellar grains
(silicates, carbonaceous grains, and silicon carbide) exist, the
current work resembles a template for future studies of elemen-
tary chemical reactions relevant to grain formation. This requires
a sophisticated link of laboratory, theoretical, and modeling study
with astronomical observations, particularly for those high-
density regions in circumstellar envelopes, hot molecular cores,
shocked gas, including supernova remnants. Considering the
crucial role of interstellar dust in star and hence solar system
formation70 and in the chemical evolution of the universe, with
grains providing critical molecular factories to even synthesize
bio-relevant organics like amino acids and sugars7, the unraveling
of the cosmic dust enigma is of fundamental importance to the
understanding of our origins.

Methods
Crossed molecular beam experiments. The experiments were conducted in a
crossed molecular beam machine under single-collision conditions at the Uni-
versity of Hawai’i at Mānoa71,72. In the primary reactant chamber, a pulsed and
supersonic beam of the D1-silylidyne radical (SiD; X2Π) at fractions of about 0.5%
was prepared in situ by ablation of a rotating silicon rod with the output from a
Spectra-Physics Quanta-Ray Pro 270 Nd:YAG laser (30 Hz, 266 nm, 10–15 mJ
pulse energies), with the ablated species further entrained by molecular deuterium
(D2, 99.7%; Icon Isotopes, Inc.). The D2 gas acts as a carrier and reactant gas, and
no other silicon-deuterium-bearing molecules were found to be present in the
beam under the experimental conditions. Considering the natural isotope abun-
dances of silicon, it was easier to optimize a SiD beam at m/z 31. The molecular
beam entraining the SiD radicals then passed a skimmer and a chopper wheel,
generating a pulsed radical beam of a well-defined peak velocity of 1981 ± 38 m s−1

and speed ratio of 5.2 ± 1.0. Notice that even if SiD radicals of A2Δ state were
formed, they can decay to the ground state during the travel time of about 18 μs to
the interaction region of the scattering chamber73. In the scattering chamber, this
segment crossed a supersonic beam of pure oxygen gas (O2; 99.998%; Matheson)
perpendicularly, which had a velocity of 778 ± 20 m s−1 and a speed ratio of 15.6 ±
1.0. This setup eventually yielded a collision energy of 33.2 ± 2.0 kJ mol−1 and a
center-of-mass (CM) angle of 23.3 ± 1.2°. The reactive scattering products were
ionized by an electron-impact ionizer operating at 80 eV and 2 mA emission
current, before they entered a quadrupole mass spectrometer (QMS, Extrel QC
150) operating in the time-of-flight (TOF) mode. The selected ion species filtered
by the QMS at a specific m/z travelled towards a stainless steel target coated with a
thin layer of aluminum biased at −22.5 kV and a cascade-of-electron pulse was

initiated upon impact. The electrons were then expelled from the stainless steel
target and flew toward an organic scintillator to generate a photon pulse, prior to
be detected by a Burle photomultiplier tube (PMT, Model 8850) operating at −1.
35 kV. The signal was eventually filtered by a discriminator (Advanced Research
Instruments, Model F-100TD) at a level of 1.6 mV before being fed into a Stanford
Research System SR430 multichannel scaler. The whole detection region is housed
in a triply, differentially pumped vacuum chamber, which can be rotated in a plane
defined by the primary and secondary beams, thus we are able to record TOF
spectra at discrete angles, integrate and normalize them with respect to the
intensity at the CM angle, and then extract the product laboratory angular dis-
tribution at a specific m/z74. In order to obtain the information about the reaction
dynamics, we employed a forward-convolution routine based on the Jacobian
transformation to convert the data in the laboratory frame into the CM frame32,75.
This method actually begins with a trial set of parameterized CM functions—the
translational energy flux distribution, P(ET), and the angular flux distribution, T(θ),
in the CM frame, to iteratively fit the laboratory TOF spectra and the angular
distribution until the best fits are reached, accounting for apparatus performances,
beam divergences, and velocity spreads. We can then plot a flux contour map, I(θ,
u)= P(u) × T(θ), which presents the flux of the reactive scattering products as a
function of the CM scattering angle (θ) and product velocity (u), and reveals
information on the scattering reaction dynamics76.

Electronic structure calculations. Geometries of most of the intermediates,
transition states, and bimolecular fragments were adapted from Schaefer et al.39

where they were optimized at the CCSD(T)//cc-pV(Q+ d)Z level of theory. Single-
point energies were computed using the explicitly correlated CCSD(T)-F12
method77 with the correlation-consistent aug-cc-pV5Z basis set;78,79 this theore-
tical approach closely approximates CCSD(T) energies at the complete basis set
(CBS) limit and is expected to provide relative energies with an accuracy of 5 kJ mol
−1. In addition to the structures considered by Schaefer et al.39, we searched for cis-
HSiOO and trans-HSiOO and cyclic HSiO2 intermediates, which may represent
initial complexes produced in the reaction of SiH with O2. We employed the same
CCSD(T)//cc-pV(Q+ d)Z method for their geometry optimization. Only the cis-
HSiOO structure [i1] was located as a local minimum on the potential energy
surface. A trans-HSiOO structure spontaneously converges to the HSiO2 isomer
[i2] during optimization. A cyclic HSiO2 geometry optimizes to a stationary point
within C2v symmetry, but shows one imaginary frequency. Once symmetry is
released, the further optimization yields the open HSiO2 isomer [i2]. Next, we
searched for a transition state connecting cis-HSiOO [i1] with HSiO2 [i2]. The
saddle-point optimization gave a non-planar structure typical for a transition state
for rotation around the Si-O bond. The transition state would normally connect
two planar cis-HSiOO and trans-HSiOO minima, but since the latter sponta-
neously rearranges to HSiO2, this transition state is in fact between [i1] and [i2].
Furthermore, the transition state appears to be only slightly higher in energy than
[i1] at the CCSD(T)//cc-pV(Q+ d)Z level, and becomes lower in energy than [i1]
when ZPE corrections are included. The transition state energy is below that of cis-
HSiOO at our final CCSD(T)-F12/aug-cc-pV5Z+ ZPE(CCSD(T)/cc-pV(Q+ d)Z)
level of theory. This result indicates that [i1] could be only a metastable structure
on the potential energy surface, which rapidly isomerizes to HSiO2 [i2]. In this
view, the entrance channel of the SiH+O2 reaction can be described as addition of
O2 to the radical site on the Si atom either in cis-conformation or trans-con-
formation followed by spontaneous rearrangement to HSiO2 resulting in formal
insertion of HSi into the O=O bond of O2. The process is driven by its very-high
exothermic energy of 538 kJ mol−1. We have also carefully mapped out the
potential energy surface for H loss from HSiO2 [i2] to verify that this process
occurs without an exit barrier. Within C2v symmetry, the electronic state of [i2] is
2B2 but the products, SiO2+H, correlate to the 2A1 state. Therefore, the H loss is a
symmetry-forbidden process within the C2v point group. If symmetry is reduced to
Cs, the two states involved are both 2A’ and hence H elimination should take place
via a crossing or avoided crossing of the two 2A’ states. Therefore, we scanned the
minimal energy path for the H loss from [i2] using the multireference second-
order perturbation theory CASPT2 method80 with the full valence active space
containing 17 electrons distributed on 13 orbitals (17,13) with the aug-cc-pVDZ
basis set. The CASPT2(17,13)/aug-cc-pVDZ geometry optimizations and vibra-
tional frequency calculations were carried out for various Si-H distances frozen at
the values from 1.5 Å to 4.0 Å with a step of 0.2 Å. Following these geometry
optimizations, relative energies of the MEP structures were refined by employing
CASPT2(17,13) calculations with a larger aug-cc-pVTZ basis set and with mixing
wave functions of the two lowest 2A’ involved in the process. The MEP has shown a
steady energy decrease with the Si-H distance from [i2] to the SiO2+H products
confirming the barrierless character of the H elimination. All CCSD(T), CCSD(T)-
F12, and CASPT2 calculations in this work were performed using the MOLPRO
2010 program package81. Collision-energy dependent rate constants for chemically
activated unimolecular reactions on the HSiO2 surface starting from the inter-
mediate [i2] were carried out employing RRKM theory using the in-house code82.
The internal energy of each intermediate was taken as a sum of its chemical
activation energy (the negative of its relative energy with respect to the SiH+O2

reactants) plus the collision energy. For reaction steps proceeding well-defined
transition states, we used CCSD(T)-F12/aug-cc-pV5Z relative energies calculated
here and CCSD(T)/cc-pV(Q+ d)Z vibrational frequencies reported by Schaefer
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et al.39 For the [i2] → SiO2+H barrierless reaction step, we employed variational
transition state theory (VTST)83,84 with transition state candidate structures ran-
ging along the MEP. Here we used vibrational frequencies of the MEP structures
calculated at the CASPT2(17,13)/aug-cc-pVDZ level and their relative energies
obtained at CASPT2(mix= 2,17,13)/aug-cc-pVTZ. For barrierless dissociation of
the OH…OSi complex [i5] to the SiO+OH products, we also utilized the VTST
approach. Here, the wave function is single-reference, the interaction has a van der
Waals character, and hence the MEP was mapped out using a density functional
wB97XD method85 including a dispersion correction with the aug-cc-pVTZ basis
set. Single-point relative energies of the MEP structures were refined at our best
CCSD(T)-F12/aug-cc-pV5Z level and were used in VTST calculations in con-
junction with wB97XD/aug-cc-pVTZ frequencies. The dipole and quadrupole
moments and polarizabilities of SiH and O2 required for the calculations of the
capture rate coefficients using long-range transition state theory were also com-
puted at the wB97XD/aug-cc-pVTZ level of theory. The unimolecular rate con-
stants obtained from the RRKM and VTST calculations for collision energies in the
0–33.2 kJ mol−1 interval were used to compute the branching ratios for the for-
mation of the SiO2+H and SiO+OH products within the reaction scheme illu-
strated in Fig. 3 employing the steady-state approximation. It should be noted that
because of very-high-energy content in the intermediate [i2] and relatively low
activation energies required for isomerization and dissociation steps, the product
branching ratios appeared to be insensitive to the collision energy within the
considered range.

Data availability. The data that support the findings of the current research are
available from the corresponding authors upon request.
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