A Free Radical Pathway to Hydrogenated Phenanthrene in Molecular Clouds – Low Temperature Growth of Polycyclic Aromatic Hydrocarbons

Aaron M. Thomas,^[a] Michael Lucas,^[a] Tao Yang,^[a] Ralf I. Kaiser,^{[a]*} Luis Fuentes,^[b] Daniel Belisario-Lara,^[b] Alexander M. Mebel^{[b]*}

Abstract: The Hydrogen-Abstraction/Acetylene-Addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free radical intermediates defy conventional wisdom that PAH growth is predominantly a high temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud.

The Hydrogen-Abstraction/Acetylene-Addition (HACA) mechanism^[1] has been instrumental for rationalizing the synthesis of polycyclic aromatic hydrocarbons (PAHs) - organic molecules carrying fused benzene rings - in high temperature combustion systems^[2-3] and in circumstellar envelopes of carbon-rich asymptotic giant branch (AGB) stars.^[3-4] The ubiquity of PAHs along with their (de)hydrogenated, ionized, and side-chain-substituted counterparts in the interstellar medium (ISM)^[5-6] is surmised from the unidentified infrared (UIR) emission bands (3 to 20 $\mu m)^{[7-8]}$ and the UV-bump^[9-11] - an absorption feature superimposed on the interstellar extinction curve near 217.5 nm - that correlate with laboratory spectra of aromatic hydrocarbons. Although individual PAHs have not been detected in the ISM yet, the explicit identification of PAHs like phenanthrene and anthracene (C14H10) in carbonaceous chondrites like Murchison and Orgueil bearing anomalous ¹³C/¹²C and D/H isotopic ratios^[12-15] strongly suggests an inter-stellar origin with fashionable astrochemical reaction networks mainly loaned from the combustion chemistry community.

[a] Mr. A. M. Thomas, Dr. M. Lucas, Dr. T. Yang, Prof. Dr. R. I. Kaiser Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822 (USA) E-mail: ralfk@hawaii.edu

Homepage: http://www.chem.hawaii.edu/Bil301/welcome.html

[b] Mr. L. Fuentes, Dr. D. Belisario-Lara, Prof. Dr. A. M. Mebel Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (USA) E-mail: mebela@fu.edu

Supporting Information and the ORCID identification numbers for the authors of this article can be found under XXX.

Here, under fuel rich conditions, acetylene (C₂H₂) has been proposed to react with aromatic hydrocarbons undergoing ring formation and expansion through a series of bimolecular reactions assembled in the HACA mechanism. Kinetic modeling^[16-19] along with electronic structure calculations^[20-24] suggest recurring progressions of hydrogen atom abstractions from the aromatic hydrocarbon followed by sequential addition of two acetylene molecules to the radical sites prior to cyclization and aromatization. Recent studies exploiting tunable vacuum ultraviolet (VUV) light exposed that the naphthalene molecule $(C_{10}H_8)$ can be formed via the reaction of the phenyl radical (C_6H_5) with two acetylene molecules (C₂H₂)^[25] through key transients in the HACA framework - styrenyl (C_8H_7) and ortho-vinylphenyl $(C_8H_7\cdot)$.^[26] HACA-type reactions involving naphthyl ($C_{10}H_7\cdot$) and of biphenylyl radicals ($C_6H_5C_6H_4$ ·) with acetylene have also lead to the three-membered ring PAHs acenaphthylene $(C_{12}H_8)^{[27]}$ and phenanthrene (C₁₄H₁₀),^[28] respectively, under high temperature combustion-relevant conditions.

High temperatures along with acetylene enrichment near the photosphere of carbon-rich Asymptotic Giant Branch (AGB) stars underscore HACA's applicability to describing soot production in these outflows. Aromatic species [benzene (C₆H₆) or phenyl (C₆H₅)] likely form within the envelope and undergo processing into polycyclic compounds via HACA^[4] before exiting to the ISM as 'free' PAHs, or condensed as carbonaceous grains or fullerenes.^[4, 29-30] Carbonaceous grains comprising aromatic interiors^[31] could contribute to the interstellar PAH budget through shattering facilitated by turbulence or supernova-induced shockwaves that release aromatic content to the ISM.[32-33] However, in recent years, astronomical models combined with observations revealed that the destruction of interstellar PAHs and carbonaceous grains by, for example, high velocity shockwaves, limit their lifetime to a few 10⁸ years.^[34-35] This time span is much shorter than the PAH injection time from stellar sources, including C-rich AGB stars such as CW Leo (IRC+10216), of some 10⁹ years, and thus the ubiquitous distribution of PAH-like species in the interstellar medium coupled with the less-than-expected production of PAHs in circumstellar envelopes suggests that crucial routes for the fast chemical growth of PAHs are missing. These routes may involve low temperature interstellar environments such as cold molecular clouds that hold temperatures down to 10 K. Considering the barriers of acetylene addition to aromatic radicals of typically 10 to 20 kJ mol^{-1,[20]} HACA cannot operate in cold molecular clouds, since these entrance barriers cannot be overcome. Therefore, key production routes to PAH-like species in the interstellar medium associated with molecular growth processes are clearly missing.

Figure 1. Laboratory angular distribution (A) and time-of-flight spectra (B) recorded at mass-to-charge 180 ($C_{14}H_{12}^{+}$) in the reaction of 1-naphthyl with 1,3-butadiene. The circles define the experimental data and the red lines represent the fitting based on the best-fit center-of-mass functions, as depicted in Figure 3. Error bars are standard error of the mean. The CM arrow indicates the center-of-mass angle. (C) Newton Diagram depicting the distribution of $C_{14}H_{12}$ produced in the crossed molecular beams reaction of 1-naphthyl + 1,3-butadiene. The differential cross section has a radius equal to the maximum center of mass velocity of $C_{14}H_{12}$.

Herein, we report the reaction dynamics of the aromatic 1naphthyl radical $[C_{10}H_7 (X^2A')]$ with 1,3-butadiene $[C_4H_6 (X^1A_q)]$ under single collision conditions in a crossed molecular beam experiment (Experimental Methods; Supporting Information) as a prototype system of a barrier-less ring expansion in PAHs via aryl radical reactions with conjugated hydrocarbons.[36] A recent combined experimental, computational, and modeling study suggests that 1,3-butadiene can be synthesized in the gas phase via the reaction of the methylidyne radical (CH) with propylene (C₃H₆),^[37] which are known constituents of the ISM. Combined with electronic structure calculations, our study exposes the first synthesis of tricyclic PAH barrierless а 1.4dihydrophenanthrene (C₁₄H₁₂) - via ring expansion involving resonantly stabilized free radical (RSFR) intermediates that underscore PAH mass growth processes in the cold interstellar medium beyond the classical HACA framework. This system is also interesting from the viewpoint of a physical-organic chemist as a benchmark to unravel the chemical reactivity, bond breaking processes, and the synthesis of truly combustion and astrochemically relevant cyclic and aromatic hydrocarbons via bimolecular gas-phase reactions in single collision events.

In the crossed molecular beam reaction of the 1-naphthyl radical with 1,3-butadiene, scattering signal was probed for the adduct at m/z 181 (C14H13⁺) and for the atomic and molecular hydrogen loss channels at m/z 180 (C₁₄H₁₂⁺) and m/z 179 (C14H11⁺), respectively. Considering that no signal was detectable at m/z 181 and that the time-of-flight spectra (TOF) at m/z 180 and m/z 179 are superimposable after scaling, only the atomic hydrogen loss channel leading to a hydrocarbon with the molecular formula C14H12 is open under the current experimental conditions. Therefore, TOF spectra were collected at m/z 180. TOF spectra were integrated and scaled to yield the laboratory angular distribution of C14H12, which depicts a relatively narrow spread of 10° holding a maximum close to the center-of-mass angle of 10.2 ± 1.1° (Figure 1). This shape proposes a complex forming reaction mechanism (indirect scattering dynamics) involving C₁₄H₁₃ reaction intermediate(s). However, considering that the hydrogen atom can be emitted from the 1-naphthyl radical and/or from the 1,3-butadiene reactant, the latter was substituted

COMMUNICATION

ceteris paribus by the isotopologue 1,3-butadiene-d₆ (C₄D₆). In this system, reactive scattering signal was probed at m/z 186 (C₁₄H₆D₆⁺) and m/z 185 (C₁₄H₇D₅⁺) at the center-of-mass angle 11.3 ± 1.1°. Signal was detected at m/z 186 and m/z 185. Within the signal-to-noise, the TOF of the m = 2 loss channel (m/z 185) overlays agreeably with that of the atomic hydrogen loss channel (m/z 186). Therefore, we can conclude that atomic hydrogen is

Figure 2. Time-of-flight spectrum taken at the center-of-mass angle for the reaction of 1-naphthyl with 1,3-butadiene-d₆ recorded at mass-to-charge ratio 186 (C₁₄H₆D₆⁺). The circles define the experimental data and the red line represents the fitting based on the best-fit center-of-mass functions.

emitted from the 1-naphthyl radical leading to signal at m/z 186, and that the signal observed at m/z 185 likely results from dissociative ionization of C₁₄H₆D₆. The corresponding TOF spectrum taken at m/z 186 at the center-of-mass is depicted in Figure 2. In summary, our laboratory data alone suggest that in the reaction of the 1-naphthyl radical with 1,3-butadiene, a hydrocarbon molecule of the formula C₁₄H₁₂ is formed via indirect reaction dynamics with the hydrogen atom displaced from the naphthyl moiety (Reaction (1)).

(1)
$$C_{10}H_7 \cdot + C_4H_6 \rightarrow C_{14}H_{12} + H_7 \cdot + C_4H_6 \rightarrow C_{14}H_7 \cdot + C_{14}H_7$$

The goal of our investigation is not only to obtain the molecular formula of the reaction product (C14H12), but also to explore the structure(s) of the product isomer(s) together with the underlying reaction mechanism(s) and chemical dynamics possibly leading to PAH(s). This is accomplished through a forward-convolution routine that transforms the laboratory data into the center-of-mass reference frame.^[38-39] The outcome is two 'best-fit' center-of-mass functions: the translational energy $P(E_T)$ and angular $T(\theta)$ flux distributions (Figure 3). It is important to highlight that the laboratory data could be fit with a single reaction channel leading to C14H12 plus atomic hydrogen via the 1-naphthyl radical and 1,3butadiene reactants. The best fit center-of-mass (CM) angular flux distribution, $T(\theta)$, is isotropic and depicts flux over the complete scattering range. This finding is indicative of an indirect reaction mechanism that proceeds through the formation of rovibrationally excited C14H13 intermediate(s). Within the error limits, a slightly forward $T(\theta)$ distribution could fit the experimental data as well. The (nearly) isotropic distribution results from the inability of the light hydrogen atom to carry away a significant fraction of the initial total angular momentum.[40] Most important, the translational energy flux distribution, $P(E_T)$, reveals a maximum product translational energy (E_{max}) of 173 ± 25 kJ mol⁻¹. For molecules born without rovibrational excitation, E_{max} represents the sum of the collision energy plus the reaction excergicity. Therefore, a subtraction of the collision energy from E_{max} reveals that the reaction to form C₁₄H₁₂ along with atomic hydrogen is excergic by 104 ± 25 kJ mol⁻¹. Also, the $P(E_T)$ shows a distribution maximum at 14 ± 4 kJ mol⁻¹, which suggests that the unimolecular decomposition of the C₁₄H₁₃ complex involves a tight exit transition state. Therefore, the reverse reaction is characterized by an entrance barrier of hydrogen atom addition to a closed shell (unsaturated) hydrocarbon. Taken together, the center-of-mass functions $P(E_T)$ and $T(\theta)$ reveal that 1-naphthyl plus 1,3-butadiene reactively scatters forming a hydrogen atom plus the heavy C₁₄H₁₂ product via a (long-lived) C₁₄H₁₃ intermediate in an overall excergic reaction.

Figure 3. Center-of-mass translational energy flux distribution $P(E_T)$ (A) and angular flux distribution $T(\theta)$ (B) leading to the formation of the C₁₄H₁₂ molecule plus atomic hydrogen in the reaction of 1-naphthyl with 1,3-butadiene. Shaded areas indicate the acceptable upper and lower error limits of the fits. The red solid lines define the best-fit functions.

We now merge these experimental results with the computational data to untangle the underlying reaction mechanism(s) and to evaluate to what extent reaction (1) can lead to the formation of a tricyclic PAH (Figure 4). The computations at the G3(MP2,CC)//B3LYP/6-311 G** level of theory (Computational Methods; Supporting Information) reveal five

Figure 4. Potential energy surface for the reaction of 1-naphthyl [C₁₀H₇· (X²A³)] plus 1,3-butadiene [C₄H₆ (X¹A₉)] depicting hydrogen-loss channels. Energies are relative to the separated reactants; energies are given in kJ mol⁻¹. The minimum energy path leading to the 1,4-dihydrophenanthrene (C₁₄H₁₂) plus atomic hydrogen products is highlighted in red. Details on the structures and vibrational frequencies are compiled in the Supporting Information.

exit leading channels to distinct C14H12 isomers, p1 to p5, with overall excergicities ranging from 16 to 106 kJ mol⁻¹. A comparison of these data with the experimental reaction energy of 104 ± 25 kJ mol⁻¹ reveals that the formation of the thermodynamically most favorable isomer p3 (1,4-dihydrophenanthrene) can account for the experimentally derived reaction energy; based on the energetics alone, we cannot eliminate contributions of the thermodynamically less favorable isomers. The electronic structure calculations exposed a barrierless pathway to 1,4-dihydrophenanthrene initiated by the formation of a van-der-Waals complex i0 from the separated reactants. This complex is weakly bound by 8 kJ mol-1 and isomerizes via a barrier of only 3 kJ mol-1 through addition of the radical center of the 1-naphthyl radical to the C1-carbon of 1,3butadiene forming a resonantly stabilized intermediate i1. After a facile cis-trans isomerization from i1 to i2, cyclization leads to intermediate i3, which is bound by 193 kJ mol-1 with respect to 1naphthyl plus 1,3-butadiene. A hydrogen elimination from the bridging carbon atom leads to aromatization and formation of p3 (1,4-dihydrophenanthrene) through a tight exit transition state that lies 25 kJ mol-1 above the separated products. This order of magnitude is in line with the experimental observation of an exit barrier close to 14 ± 4 kJ mol⁻¹ with the hydrogen atom eliminated almost perpendicularly to the plane of the decomposing complex. It is important to recall that in the reaction of 1-naphthyl with 1,3butadiene-d₆, a hydrogen atom loss was observed. Tracing the deuterium atoms in the 1,3-butadiene reactant supports this finding. Here, all deuterium atoms stay with the 1,3-butadiene moiety, and in the formation of 1,4-dihydrophenanthrene, the hydrogen atom is eliminated exclusively from the bridged carbon atom. Considering the energies of the barriers to isomerization, formation of **p1** (from **i1**), **p2** (from **i2**), **p4** (from **i1** via **i4**), and **p5** (from **i1** via **i5**) is unfavorable. At the low temperatures of the interstellar medium, alternative hydrogen abstraction pathways forming naphthalene plus C₄H₅ isomers along with the addition of the naphthyl radical to the C2 position of 1,3-butadiene are closed (Figure S1). However, these pathways may be open at elevated collision energies and equivalent higher temperatures.

Our experimental and computational investigation of the 1naphthyl plus 1,3-butadiene reaction provides compelling evidence on the facile and barrierless formation of a three-ringed PAH – 1,4-dihydrophenanthrene – under single collision conditions. The reaction follows indirect scattering dynamics and is initiated by the formation of a weakly-bound van-der-Waals complex, followed by the addition of the naphthyl radical to the C1-carbon of C₄H₆ yielding a resonantly stabilized free radical intermediate. The latter isomerized in two steps ultimately leading to 1,4-dihydrophenenthrene accompanied by hydrogen atom loss and aromatization. In the cold interstellar medium, due to the absence of an entrance barrier and location of all inherent barriers

COMMUNICATION

to isomerization residing below the energy of the separated reactants, this reaction leads exclusively to 1,4dihydrophenanthrene. Indeed, statistical (Rice-Ramsperger-Kassel-Marcus; RRKM) calculations carried out for zero-pressure conditions corresponding to crossed molecular beam experiments as well as to cold molecular clouds showed that the relative yield of 1,4-dihydrophenanthrene changes only very slightly from 100% at zero collision energy to 99.5% at the collision energy of 100 kJ mol⁻¹ if one considers the barrierless addition channels of 1-naphthyl to 1,3-butadiene. At the high collision energy, about 0.4% of the p1 product is predicted to be formed. However, under combustion-relevant conditions at finite pressures, the reaction changes likely to a multichannel process that produces energetically less favorable C14H12 isomers along with potential hydrogen abstraction products. It is worth mentioning however that the difference in the

Scheme 1. C_2H_2 addition to *o*-biphenylyl, 1-napthyl, and 2-naphthyl is inhibited by an entrance barrier (red), while that of C_4H_4 proceeds barrierlessly and is thus viable at extremely low temperatures (blue). All paths shown are excergic overall.

barrier heights to form 1,4-dihydrophenanthrene and **p1** is 61 kJ mol⁻¹, that is 15 kJ mol⁻¹ higher than the difference in the barrier heights to form 1,4-dihydronaphthalene and the one-ring analog of **p1** in the phenyl + 1,3-butadiene reaction.^[41] This change originates from the additional aromatic stabilization due to the presence of the extra ring and results in a higher yield of 1,4-dihydronaphthalene from C₆H₅ + C₄H₆.^[41] Therefore, for larger PAHs, the analogous reactions of their radicals with 1,3-butadiene are anticipated to lead to a one-ring extension even more efficiently.

Considering that the related reactions of the phenyl radical with 1,3-butadiene^[41] and vinylacetylene^[42] synthesize 1,4-dihydronaphthalene and naphthalene, respectively, via submerged barriers, and that the 1-naphthyl-1,3-butadiene system leads solely to 1,4-dihydrophenanthrene at ultralow

temperatures, our present works leads us to the prediction that the reaction of the 1-napthyl and 2-napthyl radicals with vinylacetylene is likely to result in the barrierless formation of phenanthrene and anthracene (C14H10) in the cold interstellar medium, such as in the Taurus Molecular Cloud TMC-1 (Scheme 1). Our recent RRKM - Master Equation calculations have shown that in the prototype phenyl plus vinylacetylene reaction naphthalene remains a major or significant low-temperature product up to the pressure of 10⁻⁷ bar.^[43] This mechanism represents a hitherto overlooked low-energy (temperature) pathway to PAH growth - among them catacondensed C14H10 and C14H12 isomers - in the interstellar medium, and may resemble a key pathway for the addition of six-membered rings to existing PAHs that lack a bay-region. Once those pathways of 1- and 2napthyl radicals with vinylacetylene have been unraveled, astrochemists and combustion scientists will be in the position to quantify the contribution of vinylacetylene and 1,3-butadiene mediated routes to PAHs in distinct extreme environments.

In conclusion, our study reveals the first low temperature pathway accounting for the barrierless formation of a tricyclic (polycyclic) aromatic hydrocarbon - 1,4-dihydrophenanthrene (C14H12) - via the elementary bimolecular gas phase reaction of the 1-naphthyl radical (C10H7·) with 1,3-butadiene (C4H6). The reaction proceeds by a de-facto barrierless addition of the naphthyl radical with its radical center to the H₂C moiety of the 1,3-butadiene reactant - facilitated by a weakly bound van der Waals complex - followed by isomerization and atomic hydrogen loss accompanied by aromatization to form 1,4dihydrophenanthrene. Statistical (RRKM) calculations confirm that the pathway leading to 1,4-dihydrophenanthrene plus atomic hydrogen accounts for 100% of all products in the limit of zero collision energy as closely present in cold molecular clouds such as TMC-1. This combination of experimental, ab initio, and statistical methodologies presented in this work reveals a novel reaction mechanism of aryl-type radical additions to conjugated hydrocarbon systems like 1,3-butadiene and vinylacetylene (C₄H₄), and changes how we think about molecular growth processes to PAHs in the cold regions of space.

Experimental Section

See Supportingl Information.

Acknowledgements

This work was supported by the US Department of Energy, Basic Energy Sciences DE-FG02-03ER15411 and DE-FG02-04ER15570 to the University of Hawaii and to Florida International University, respectively.

The authors declare no conflicts of interest.

Keywords: gas phase chemistry • polycyclic aromatic hydrocarbon • astrochemistry • aryl radicals • mass spectrometry

COMMUNICATION

- M. Frenklach, D. W. Clary, W. C. Gardiner, S. E. Stein, Symp. (Int.) Combust., [Proc.] 1985, 20, 887-901.
- [2] M. Frenklach, Phys. Chem. Chem. Phys. 2002, 4, 2028-2037.
- [3] M. Frenklach, E. D. Feigelson, Astrophys. J. 1989, 341, 372-384.
- [4] I. Cherchneff, Astron. Astrophys. 2012, 545, A12.
- [5] L. d'Hendecourt, P. Ehrenfreund, *Adv. Space Res.* **1997**, *19*, 1023-1032.
- [6] Y. M. Rhee, T. J. Lee, M. S. Gudipati, L. J. Allamandola, M. Head-Gordon, *Proc. Natl. Acad. Sci. U. S. A.* 2007, 104, 5274-5278.
- [7] L. Allamandola, A. Tielens, J. Barker, Astrophys. J., Suppl. Ser. 1989, 71, 733-775.
- [8] M. R. Allen, E. D. Gary, A. D. Michael, Astrophys. J. 2009, 702, 301-306.
- [9] W. W. Duley, Astrophys. J., Lett. 2006, 639, L59.
- [10] M. Steglich, C. Jäger, G. Rouillé, F. Huisken, H. Mutschke, H. Th, Astrophys. J., Lett. 2010, 712, 6.
- [11] M. Steglich, J. Bouwman, F. Huisken, H. Th, Astrophys. J. 2011, 742, 12.
- [12] Y. Huang, J. C. Aponte, J. Zhao, R. Tarozo, C. Hallmann, *Earth Planet. Sci. Lett.* **2015**, *426*, 101-108.
- [13] H. Naraoka, A. Shimoyama, K. Harada, Earth Planet. Sci. Lett. 2000, 184, 1-7.
- [14] S. Messenger, S. Amari, X. Gao, R. M. Walker, S. J. Clemett, X. D. F. Chillier, R. N. Zare, R. S. Lewis, *Astrophys. J.* **1998**, *502*, 284-295.
- [15] S. J. Clemett, C. R. Maechling, R. N. Zare, P. D. Swan, R. M. Walker, *Science* **1993**, 262, 721-725.
- [16] M. Frenklach, H. Wang, Symp. (Int.) Combust., [Proc.] 1991, 23, 1559-1566.
- [17] J. D. Bittner, J. B. Howard, Symp. (Int.) Combust., [Proc.] 1981, 18, 1105-1116.
- [18] H. Wang, M. Frenklach, J. Phys. Chem. 1994, 98, 11465-11489.
- [19] H. Wang, M. Frenklach, *Combust. Flame* **1997**, *110*, 173-221.
 [20] V. V. Kislov, N. I. Islamova, A. M. Kolker, S. H. Lin, A. M. Mebel, *J. Chem.*
- *Theory Comput.* **2005**, *1*, 908-924.
- [21] H. Richter, J. B. Howard, Prog. Energy Combust. Sci. 2000, 26, 565-608.
- [22] N. D. Marsh, M. J. Wornat, Proc. Combust. Inst. 2000, 28, 2585-2592.
- [23] I. V. Tokmakov, M. C. Lin, J. Am. Chem. Soc. 2003, 125, 11397-11408.
- [24] V. V. Kislov, A. I. Sadovnikov, A. M. Mebel, J. Phys. Chem. A 2013, 117, 4794-4816.
- [25] D. S. N. Parker, R. I. Kaiser, T. P. Troy, M. Ahmed, Angew. Chem., Int. Ed. 2014, 53, 7740-7744.

- [26] T. Yang, T. P. Troy, B. Xu, O. Kostko, M. Ahmed, A. M. Mebel, R. I. Kaiser, Angew. Chem., Int. Ed. 2016, 55, 14983-14987.
- [27] D. S. N. Parker, R. I. Kaiser, B. Bandyopadhyay, O. Kostko, T. P. Troy, M. Ahmed, Angew. Chem., Int. Ed. 2015, 127, 5511-5514.
- [28] T. Yang, R. I. Kaiser, T. P. Troy, B. Xu, O. Kostko, M. Ahmed, A. M. Mebel, M. V. Zagidullin, V. N. Azyazov, *Angew. Chem., Int. Ed.* **2017**, *129*, 4586-4590.
- [29] C. Jäger, F. Huisken, H. Mutschke, I. L. Jansa, H. Th, Astrophys. J. 2009, 696, 706.
- [30] O. Berné, A. G. G. M. Tielens, Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 401-406.
- [31] J. E. Chiar, A. G. G. M. Tielens, A. J. Adamson, A. Ricca, Astrophys. J. 2013, 770, 78.
- [32] H. Hirashita, Mon. Not. R. Astron. Soc.: Lett. 2010, 407, L49-L53.
- [33] J. Y. Seok, H. Hirashita, R. S. Asano, Mon. Not. R. Astron. Soc. 2014, 439, 2186-2196.
- [34] E. R. Micelotta, A. P. Jones, A. G. G. M. Tielens, Astron. Astrophys. 2010, 510, A36.
- [35] A. P. Jones, J. A. Nuth, Astron. Astrophys. 2011, 530, A44.
- [36] R. I. Kaiser, P. Maksyutenko, C. Ennis, F. Zhang, X. Gu, S. P. Krishtal, A. M. Mebel, O. Kostko, M. Ahmed, *Faraday Discuss.* **2010**, *147*, 429-478.
- [37] B. M. Jones, F. Zhang, R. I. Kaiser, A. Jamal, A. M. Mebel, M. A. Cordiner, S. B. Charnley, *Proc. Natl. Acad. Sci. U. S. A.* 2011, 108, 452-457.
- [38] P. S. Weiss, Ph.D. Dissertation thesis, University of California (Berkeley, CA), 1986.
- [39] M. F. Vernon, Ph.D. Dissertation thesis, University of California (Berkeley, CA), 1983.
- [40] R. I. Kaiser, A. M. Mebel, Int. Rev. Phys. Chem. 2002, 21, 307-356.
- [41] R. I. Kaiser, D. S. N. Parker, F. Zhang, A. Landera, V. V. Kislov, A. M. Mebel, J. Phys. Chem. A 2012, 116, 4248-4258.
- [42] D. S. N. Parker, F. Zhang, Y. S. Kim, R. I. Kaiser, A. Landera, V. V. Kislov, A. M. Mebel, A. G. G. M. Tielens, *Proc. Natl. Acad. Sci. U. S. A.* **2012**, 109, 53-58.
- [43] A. M. Mebel, A. Landera, R. I. Kaiser, J. Phys. Chem. A 2017, 121, 901-926.

WILEY-VCH

COMMUNICATION COMMUNICATION

At low temperature extremes like those found in Taurus Molecular Cloud, polycyclic aromatic hydrocarbons increase their complexity via conjugated hydrocarbons. By probing the reaction of the aromatic naphthyl radical with 1,3-butadiene under single-collision conditions, we find that the tricyclic dihydrophenanthrene molecule constitutes 100% of product formation at conditions relevant to the cold interstellar medium. The underlying reaction type, namely aryl addition to conjugated hydrocarbons, defies conventional PAH growth schemes and may be key to understanding the reappropriation of interstellar carbon into macromolecules.

(TMC image credit: European Southern Observatory, eso1209eb, Creative Commons Attribution 4.0 International License).

Gas-Phase Chemistry

A. M. Thomas, M. Lucas, T. Yang, R. I. Kaiser, L. Fuentes, D. Belisario-Lara, A. M. Mebel

Page No. – Page No.

A Free Radical Pathway to Hydrogenated Phenanthrene in Molecular Clouds – Low Temperature Growth of Polycyclic Aromatic Hydrocarbons

Experimental Methods

The reaction of the 1-naphthyl (C₁₀H₇·) radical with 1,3-butadiene (C₄H₆) was performed in a universal crossed molecular beams machine at the University of Hawaii.^[1] A pulsed supersonic beam of naphthyl radicals was generated via photodissociation (ArF, 193 nm, 30 mJ/pulse) of helium (99.9999%; AirGas; 1034 Torr) seeded 1-chloronaphthalene (C₁₀H₇Cl: >97.0%; Tokyo Chemical Industry). Here, the precursor was purified through two freeze-thaw cycles and heated to 448 K to reach a seeding fraction of 8%. After photodissociation of the pulsed precursor beam 1 mm downstream of the nozzle, the 1-naphthyl radical beam was skimmed then velocity-selected by a 4-slot chopper wheel before colliding perpendicularly with a supersonic beam of 1,3-butadiene released by a second pulsed valve at a backing pressure of 550 Torr. The peak velocities and speed ratios of the 1-naphthyl and 1,3-butadiene beams were determined to be $v_p = 1758 \pm 10$ m s⁻¹ and $S = 13.5 \pm 1.3$ as well as $v_p = 746 \pm 10$ m s⁻¹ and $S = 8.4 \pm 0.4$, respectively, where the secondary pulsed valve was triggered 100 µs prior to the primary valve. The 1-naphthyl plus 1,3-butadiene reaction was repeated using the 1,3-butadiene-d₆ (1,3-C₄D₆: 98% D; Icon Isotopes) isotopologue.

Product detection was accomplished by using a triply differentially pumped universal detector that is rotatable in the plane defined by the reactant beams. Neutral products entered the detector and were ionized with 40 eV electrons, mass-filtered by a quadrupole mass spectrometer (1.2 MHz), and detected by a Daly detector. The latter employs an aluminum-coated stainless steel target (-25 kV), an aluminum-coated scintillator, and a photomultiplier tube (1.35 kV). Data were interpreted in the center-of-mass frame via a forward convolution routine that accounts for the machine and beam parameters.^[2-3] The best fits were achieved iteratively through the comparison of the experimentally recorded data and the computed outputs from the resulting differential cross section (DCS). The DCS $I(E_T, \theta)$ is assumed to be separable into the translational energy E_T and angularly θ dependent components, i.e. $I(E_T, \theta) = P(E_T) \times T(\theta)$. Upper and lower error bounds of the $P(E_T)$ and $T(\theta)$ fits were determined through the error limits of the laboratory angular distribution along with the uncertainties in the beam velocities.

Computational Methods

Geometries of the reactants, products and various intermediates and transition states on the C₁₄H₁₃ potential energy surface were optimized at the hybrid density functional B3LYP level of theory^[4-5] with the 6-311G** basis set. The same B3LYP/6-311G** method was employed to calculate vibrational frequencies, which were then used to compute zero-point energy (ZPE) corrections, to characterize the stationary points as minima or first-order saddle points, and to evaluate rate constants for unimolecular reaction steps. Single-point energies were refined using the G3(MP2,CC)//B3LYP modification^[6-7] of the original Gaussian 3 (G3) scheme,^[8] which provides accuracy for relative energies within 10 kJ mol⁻¹. The ab initio and DFT calculations were carried out using the GAUSSIAN 09^[9] and MOLPRO 2010^[10] program packages. Relative reaction product yields under single-collision conditions were computed using Rice– Ramsperger–Kassel–Marcus (RRKM) theory.^[11-13] The rate constants were calculated as functions of available internal energy, where the internal energy was taken as a sum of the energy of chemical activation in the reaction of 1-naphthyl with 1,3-butadiene and the collision energy, assuming that a dominant fraction of the latter is converted to internal vibrational energy. Only a single total-energy level was considered throughout, as for single-collision conditions (zeropressure limit).^[14] The harmonic approximation was employed to compute numbers and densities of state required for evaluating the rate constants. Using the calculated rate constants, product branching ratios were computed by solving first-order kinetic equations within the steady-state approximation for unimolecular isomerization and fragmentation steps of initial reaction intermediates formed as a result of the addition of 1-naphthyl to 1,3-butadiene.

- [1] R. I. Kaiser, P. Maksyutenko, C. Ennis, F. Zhang, X. Gu, S. P. Krishtal, A. M. Mebel, O. Kostko, M. Ahmed, *Faraday Discuss.* **2010**, *147*, 429-478.
- [2] P. S. Weiss, Ph.D. Dissertation thesis, University of California (Berkeley, CA), 1986.
- [3] M. F. Vernon, Ph.D. Dissertation thesis, University of California (Berkeley, CA), 1983.
- [4] A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
- [5] C. Lee, W. Yang, R. G. Parr, *Physical Review B* 1988, 37, 785-789.
- [6] A. G. Baboul, L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys. 1999, 110, 7650-7657.
- [7] L. A. Curtiss, K. Raghavachari, P. C. Redfern, A. G. Baboul, J. A. Pople, *Chem. Phys. Lett.* **1999**, *314*, 101-107.
- [8] L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, J. A. Pople, J. Chem. Phys. 1998, 109, 7764-7776.
- [9] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson.
- [10] H.-J. Werner, P. Knowles, R. Lindh, F. R. Manby, M. Schütz, P. Celani, T. Korona, G. Rauhut, R. Amos, A. Bernhardsson, 2010.
- [11] H. Eyring, S. H. Lin, S. M. Lin, Basic Chemical Kinetics, John Wiley and Sons, Inc., New York, NY, 1980.
- [12] P. J. Robinson, K. A. Holbrook, Unimolecular Reactions, John Wiley & Sons, Ltd., New York, NY, 1972.
- [13] J. Steinfield, J. Francisco, W. Hase, *Chemical Kinetics and Dynamics*, Prentice Hall, Englewood Cliffs, NJ, **1982**.
- [14] V. V. Kislov, T. L. Nguyen, A. M. Mebel, S. H. Lin, S. C. Smith, J. Chem. Phys. 2004, 120, 7008-7017.

Figure S1. Structural schematic of the 1-napthyl + 1,3-butadiene($-d_6$) reaction coordinate leading to the formation of 1,4-dihydrophenanthrene($-1,1,2,3,4,4-d_6$) derived from the potential energy surface depicted in Figure 4.

Figure S2. Potential energy surface for the reaction of 1-naphthyl $[C_{10}H_7 (X^2A')]$ plus 1,3butadiene $[C_4H_6 (X^1A_g)]$ at the G3(MP2,CC)//B3LYP/6-311G** level of theory. Energies are relative to the separated reactants and given in kJ mol⁻¹.

Table S1. Optimized cartesian coordinates and vibrational frequencies of various species involved in the 1-napthyl + 1,3-butadiene reaction.

Structure	Coordinates		Frequencie	es
	C 0 0.023 0.87 -0.005	169.0815	186.4021	361.6147
	C 0 -1.245 1.506 -0.011	400.4761	462.3548	507.2935
	C 0 1.254 1.536 -0.007	508.4015	521.6622	610.9118
1. nonletherl	C 0 -2.397 0.757 -0.009	631.436	731.0985	772.9352
I-naphtnyi	C 0 -2.333 -0.656 0	774.2017	790.0047	800.1065
	C 0 -1.12 -1.301 0.006	865.775	893.207	932.4236
Ψ	C 0 0.095 -0.568 0.003	964.7622	976.4435	998.9149
	C 0 2.483 0.967 -0.001	1033.4616	1046.5316	1138.8633
	C 0 1.372 -1.194 0.009	1169.2441	1175.9502	1197.8391
	C 0 2.531 -0.457 0.007	1236.259	1270.7261	1360.445
	H 0 -1.285 2.588 -0.017	1378.4397	1389.6675	1451.6278
	H 0 -3.363 1.249 -0.013	1483.7947	1520.9957	1583.074
A	H 0 -3.252 -1.232 0.001	1637.5411	1663.0357	3157.6021
	H 0 -1.074 -2.385 0.012	3159.128	3169.2163	3170.3996
	H 0 3.397 1.551 -0.003	3181.3196	3182.2589	3192.7115
	H 0 1.417 -2.277 0.016			
	H 0 3.496 -0.954 0.012			
	C 0 -1.763 -0.556 0.000	174.7307	299.7384	518.7089
1.3-butadiene	C 0 -0.688 0.239 0.000	539.5033	781.1108	899.2131
i,s cumarene	C 0 0.688 -0.239 0.000	935.2888	936.3672	1001.4607
6	C 0 1.763 0.556 0.000	1004.0979	1058.2456	1226.8727
	H 0 -1.667 -1.637 0.000	1314.7141	1319.9258	1415.4793
	H 0 -2.768 -0.154 0.000	1473.4839	1653.2799	1706.0528
	H 0 -0.822 1.319 0.000	3122.6088	3131.6187	3135.2663
	H 0 0.822 -1.319 0.000	3136.0574	3219.197	3219.64
۵ ۵	H 0 2.768 0.154 0.000			
	H 0 1.667 1.637 0.000			

naphthalene	C 0 -1.81 0.479 0.000 C 0 -2.415 -0.754 0.000 C 0 -2.415 -0.754 0.000 C 0 -1.633 -1.933 0.000 C 0 -0.262 -1.854 0.000 C 0 0.396 -0.596 0.000 C 0 0.262 1.854 0.000 C 0 1.81 -0.479 0.000 C 0 1.633 1.933 0.000 C 0 -0.396 0.596 0.000 C 0 2.415 0.754 0.000 H 0 -2.409 1.384 0.000 H 0 -2.122 -2.901 0.000 H 0 0.34 -2.758 0.000 H 0 2.409 -1.384 0.000 H 0 2.122 2.901 0.000 H 0 3.497 0.829 0.000	173.4641 395.8173 518.9789 636.11 786.8972 849.4725 956.9713 999.8054 1151.05 1185.142 1287.044 1418.015 1548.692 1671.224 3160.299 3175.703	$186.503 \\ 479.6536 \\ 519.9213 \\ 729.1005 \\ 798.3575 \\ 896.8187 \\ 974.2974 \\ 1035.578 \\ 1169.144 \\ 1232.356 \\ 1391.18 \\ 1490.58 \\ 1613.751 \\ 3156.238 \\ 3163.757 \\ 3187.244 \\ \end{cases}$	365.6943 488.2683 634.9425 773.1528 808.8587 950.9586 992.4737 1046.283 1171.906 1270.067 1398.354 1491.658 1641.301 3158.023 3174.368 3188.402
CH2CHCHCH	C 0 -1.343 -0.291 0.078 C 0 -0.323 0.461 0.495 C 0 1.108 0.212 0.214 C 0 1.597 -0.329 -0.879 H 0 -1.186 -1.195 -0.5 H 0 -2.367 -0.03 0.318 H 0 -0.527 1.333 1.114 H 0 1.804 0.543 0.987 H 0 1.237 -0.704 -1.826	139.3725 612.1843 886.2099 1023.389 1324.422 1683.745 3138.763	263.6516 725.0418 943.99 1078.421 1441.915 3081.93 3221.527	485.2365 847.0438 946.1638 1269.114 1631.761 3127.543 3234.545

	C 0 -1.626 -0.157 -0.631	206.2749	213.5512	496.0615
	C 0 -0.48 0.592 -0.371	524.9901	573.2105	741.2263
$C\Pi_2 C\Pi CC\Pi_2$	C 0 0.64 0.135 0.227	883.6799	907.7026	937.2938
	C 0 1.717 -0.304 0.803	981.0715	1090.359	1193.552
	Н 0 -1.687 -1.201 -0.355	1376.856	1449.111	1492.056
	H 0 -2.478 0.296 -1.119	1909.844	3068.407	3111.5
	H 0 -0.475 1.639 -0.672	3126.936	3151.733	3252.499
	Н 0 2.539 -0.738 0.233			
	H 0 1.851 -0.262 1.884			
	C 0 2.688481 -2.361042 -0.280065	3.7681	7.3767	13.9408
	C 0 3.322052 -1.142844 -0.323987	21.5988	33.5656	48.7704
	C 0 2.608842 0.072542 -0.138727	169.0406	175.7855	186.9135
	C 0 1.189494 0.020305 0.100344	298.2164	362.1299	400.4949
	C 0 0.630967 -1.263108 0.128245	462.3644	507.1734	508.0127
	C 0 1.284774 -2.436287 -0.045356	518.3938	521.5714	543.6658
	Н 0 3.250778 - 3.277416 - 0.424136	609.5571	631.3737	731.1536
	H 0 0.782054 -3.396497 -0.011308	771.5036	773.6884	783.3021
:0	C 0 -3.150892 -0.716310 1.354029	790.6618	799.7785	866.5518
10	C 0 -3.681496 -0.440222 0.157466	892.9695	899.9194	931.9012
	C 0 -4.985371 0.176705 -0.041551	936.4394	942.2319	965.3773
	C 0 -5.515800 0.449571 -1.238058	976.4178	1000.7013	1003.2153
	Н 0 -2.175350 -1.178523 1.447725	1004.6748	1033.7619	1046.9684
	Н 0 -3.120096 -0.685966 -0.741778	1059.2199	1138.7058	1168.8455
	H 0 -5.545538 0.421526 0.858862	1176.5984	1198.122	1226.1727
	H 0 -6.491736 0.909387 -1.336881	1236.2603	1272.8432	1314.3884
	H 0 -4.986555 0.219308 -2.157451	1319.8658	1359.1251	1378.6301
	H 0 4.390766 -1.093471 -0.503345	1388.9349	1415.0531	1451.3555
	C 0 3.235803 1.344668 -0.179242	1472.9939	1483.8804	1520.9965
	C 0 2.509255 2.496159 0.004316	1582.3835	1636.9168	1650.6586
	C 0 1.115350 2.437083 0.238694	1662.2981	1703.9057	3121.646
	C 0 0.466654 1.227306 0.286443	3128.8816	3133.748	3135.2438
	H 0 4.305002 1.392969 -0.358734	3156.5692	3158.1452	3168.251
	H 0 3.004526 3.460003 -0.029960	3169.6702	3180.5257	3181.7412
	H 0 0.557873 3.355791 0.381366	3191.9234	3217.1934	3218.9727
	H 0 -0.600579 1.173401 0.466042			
	Н 0 -3.679828 -0.487673 2.274278			
i1	C 0 -2.215 -0.633 0.541	34.2819	44.2654	117.343

	C 0 -1.976 -2.015 0.322	139.3304	178.7399	207.3438
	C 0 -0.743 -2.446 -0.092	238.9196	275.9113	301.7059
	C 0 0.301 -1.518 -0.313	416.3863	416.9379	479.6005
	C 0 0.12 -0.165 -0.126	499.7969	518.2524	534.4393
	C 0 -1.158 0.309 0.319	544.2789	561.5695	613.3209
	C 0 1.259 0.821 -0.366	639.0191	719.1145	743.4374
	C 0 2.449 0.279 -1.093	770.1833	789.2609	803.2892
6	C 0 3.729 0.214 -0.564	806.8639	810.5521	861.0085
	C 0 4.847 -0.25 -1.232	869.1447	906.0626	930.945
	C 0 -3.481 -0.166 0.98	961.375	973.0111	987.718
	C 0 -1.43 1.683 0.564	996.554	996.8124	1028.2642
	C 0 -2.668 2.102 0.993	1051.9268	1096.8268	1118.3405
	C 0 -3.707 1.17 1.202	1169.0318	1184.2198	1189.6965
	H 0 -2.783 -2.72 0.491	1205.6798	1215.4155	1232.3677
	Н 0 -0.558 -3.502 -0.253	1253.5272	1279.441	1285.557
	H 0 1.269 -1.884 -0.632	1300.0951	1364.6162	1383.3474
	H 0 1.577 1.243 0.596	1398.0087	1424.8369	1468.9998
	H 0 0.86 1.666 -0.943	1471.6405	1495.7597	1499.2739
	H 0 2.291 -0.065 -2.112	1519.3753	1548.3997	1618.9051
	H 0 3.861 0.557 0.461	1641.3182	1664.0877	2986.0572
	Н 0 5.819 -0.274 -0.756	3025.0996	3114.1931	3132.1496
	H 0 4.784 -0.603 -2.255	3139.3214	3157.5602	3159.654
	Н 0 -4.273 -0.89 1.14	3167.9568	3172.2826	3182.919
	H 0 -0.649 2.418 0.416	3184.4755	3196.1963	3234.2987
	Н 0 -2.847 3.156 1.173			
	H 0 -4.679 1.512 1.538			
	C 0 -2.057 -0.899 0.268	25.2957	31.0964	118.3627
j2	C 0 -1.664 -2.244 0.045	144.6196	178.2394	219.835
12	C 0 -0.341 -2.561 -0.111	248.1019	287.1782	348.6634
	C 0 0.648 -1.553 -0.043	415.5216	433.8808	479.579
	C 0 0.323 -0.233 0.182	500.1444	530.3732	534.0146
	C 0 -1.057 0.126 0.335	541.6261	579.1827	610.0754
	C 0 1.403 0.844 0.246	640.0331	704.6147	743.6109
	C 0 2.808 0.343 0.391	767.6658	789.581	791.1158
	C 0 3.806 0.411 -0.574	805.7636	809.3498	857.6026
e e	C 0 3.695 0.902 -1.861	869.267	904.3238	930.4393
	C 0 -3.423 -0.547 0.422	964.0261	985.4379	995.3405

	C 0 -1.49 1.464 0.543	996.0539	1005.0769	1034.8784
	C 0 -2.822 1.772 0.685	1047.4294	1053.6765	1097.3212
	C 0 -3.802 0.757 0.627	1168.7518	1177.0309	1185.5569
	H 0 -2.429 -3.012 -0.004	1189.3169	1231.8806	1240.5169
	H 0 -0.041 -3.588 -0.288	1245.2458	1258.6262	1281.116
	H 0 1.688 -1.826 -0.174	1305.3649	1381.0275	1395.9387
	H 0 1.192 1.488 1.109	1424.9347	1432.3918	1470.686
	H 0 1.314 1.491 -0.633	1472.7131	1487.7246	1496.8422
	H 0 3.06 -0.105 1.347	1525.1589	1548.3324	1618.6527
	H 0 4.782 0.031 -0.278	1641.244	1663.9407	3002.0947
	H 0 4.548 0.907 -2.527	3043.6691	3125.0902	3147.0932
	H 0 2.763 1.287 -2.256	3156.4431	3156.9635	3159.3982
	H 0 -4.169 -1.333 0.373	3167.7576	3173.2192	3183.4872
	H 0 -0.759 2.262 0.588	3185.3879	3197.26	3237.1894
	H 0 -3.124 2.802 0.842			
	H 0 -4.85 1.011 0.742			
	C 0 -2.407 1.924 1.485	54.0793	103.0051	141.1685
	C 0 -3.382 0.927 1.35	191.4149	238.0062	248.5803
	C 0 -1.1 1.687 1.103	378.5158	392.6154	407.9959
	C 0 -3.022 -0.314 0.831	434.2611	451.0257	494.1989
	C 0 -0.696 0.431 0.56	511.4515	527.6245	70.218
	C 0 -1.711 -0.586 0.439	599.776	674.7642	685.6595
;3	C 0 -1.345 -1.886 -0.092	711.3542	745.3928	765.1222
15	C 0 0.626 0.158 0.153	793.8207	801.7636	835.6719
	C 0 1.038 -1.2 -0.353	858.8217	915.6865	927.1854
	C 0 1.736 1.17 0.26	938.8527	960.1189	973.678
	C 0 -0.089 -2.183 -0.452	987.1776	993.5756	994.6329
	C 0 2.858 0.956 -0.725	1009.974	1046.1019	1056.2575
	C 0 2.88 -0.027 -1.622	1066.0465	1131.8564	1165.2135
	C 0 1.81 -1.081 -1.697	1172.7546	1182.982	1186.5154
	H 0 -2.677 2.891 1.896	1205.7025	1220.33	1238.4496
	H 0 -4.406 1.118 1.65	1284.5589	1293.11	1316.2562
	H 0 -0.368 2.474 1.229	1326.2399	1342.5665	1376.1554
	H 0 -3.769 -1.094 0.726	1409.246	1413.3991	1429.6167
	H 0 -2.131 -2.63 -0.185	1454.9197	1464.8184	1481.1516
	H 0 1.784 -1.605 0.36	1491.1763	1560.9573	1606.3031
	H 0 2.151 1.173 1.283	1681.8412	1721.5624	2876.5873

	H 0 1.347 2.184 0.116	2932.7224	3004.7946	3026.305
	H 0 0.152 -3.169 -0.838	3036.6273	3133.2614	3140.6055
	H 0 3.666 1.682 -0.698	3155.2277	3156.3114	3162.3744
	H 0 3.7 -0.091 -2.332	3165.213	3185.8594	3196.5732
	H 0 1.102 -0.855 -2.505			
	H 0 2.253 -2.053 -1.942			
	C 0 -1.669 0.153 -0.198	61.9432	64.93181	04.873
	C 0 -2.838 -0.518 -0.465	159.9421	169.1835	172.6631
	C 0 -2.886 -1.928 -0.404	203.6557	273.0227	314.0156
	C 0 -1.758 -2.635 -0.071	323.3209	400.098	440.9628
	C 0 0.769 0.115 0.426	449.1076	481.7482	496.3474
	C 0 -0.534 -1.974 0.212	518.9166	551.5951	577.4917
	C 0 0.629 -2.709 0.557	637.1624	653.25	695.3891
:4	C 0 -0.476 -0.542 0.146	728.7634	749.6083	796.1499
14	C 0 0.943 1.635 0.343	806.7642	818.091	868.0675
	C 0 1.867 -0.651 0.757	880.4038	885.7505	921.4273
e &e	C 0 1.805 -2.06 0.827	946.9536	969.973	985.3682
De-D	C 0 0.937 2.127 -1.095	992.3405	998.7138	1026.9719
	C 0 -0.01 2.407 1.206	1045.6065	1051.4199	1083.9965
I I	C 0 1.95 2.764 -1.672	1112.0927	1154.5785	1168.4776
	H 0 -1.66 1.235 -0.232	1186.2762	1189.6705	1230.1698
T T T	H 0 -3.732 0.039 -0.723	1240.4757	1261.8101	1281.2861
	H 0 -3.814 -2.447 -0.618	1301.4405	1328.0789	1382.1844
e e e e	Н 0 -1.785 -3.718 -0.017	1390.1952	1422.0707	1443.945
é é	H 0 0.569 -3.791 0.605	1451.644	1473.5886	1493.1533
	H 0 1.959 1.836 0.721	1546.7639	1616.0271	1639.0826
	H 0 2.81 -0.158 0.966	1662.9407	1696.5957	2928.0497
	H 0 2.694 -2.62 1.094	3123.6203	3134.3597	3149.56
	H 0 0.031 1.936 -1.664	3156.2674	3158.2474	3164.6428
	H 0 -0.431 1.963 2.099	3168.5698	3182.7132	3183.8275
	H 0 -0.141 3.47 1.04	3192.8486	3208.4514	3245.1366
	H 0 1.895 3.103 -2.701			
	H 0 2.874 2.969 -1.139			
	C 0 -0.978 -2.143 0.305	55.0668	111.2069	170.0945
;5	C 0 -0.058 -1.078 0.099	203.4926	224.5361	297.6984
13	C 0 -0.542 -3.404 0.665	365.3892	383.6412	414.5611
	C 0 -0.453 0.218 -0.271	457.6983	482.4101	505.6131

	C 0 1.34 -1.338 0.333	527.1633	564.0382	644.4648
	C 0 2.282 -0.231 0.274	677.3285	700.9446	717.8225
	C 0 1.745 -2.621 0.703	751.3961	778.44	794.7237
	C 0 0.824 -3.655 0.859	804.2979	813.511	843.4683
τψ [*] Ψ [*] Τ [*]	C 0 -1.836 0.812 -0.162	861.3619	869.4681	903.13
	C 0 0.547 1.284 -0.647	939.7906	973.0254	974.4498
	C 0 1.927 1.001 -0.126	986.382	996.0605	1001.7454
6 6	C 0 -1.589 2.314 0.041	1048.1183	1051.7343	1059.77
÷	C 0 -0.124 2.605 -0.221	1076.2789	1101.0163	1110.2573
	C 0 -1.182 3.149 -1.146	1139.8745	1157.5767	1173.5701
	H 0 -2.035 -1.964 0.147	1180.1952	1191.2329	1210.6289
	H 0 -1.261 -4.205 0.797	1223.4277	1255.375	1279.6244
	H 0 3.303 -0.428 0.587	1284.2327	1297.9397	1332.9074
	H 0 2.799 -2.806 0.887	1345.5056	1378.7946	1410.7197
	H 0 1.161 -4.646 1.141	1421.3269	1456.534	1478.1566
	H 0 -2.383 0.387 0.685	1488.0071	1490.6448	1560.2132
	H 0 -2.451 0.623 -1.055	1605.4029	1663.9242	2843.911
	H 0 0.64 1.307 -1.752	2971.2866	3044.3244	3098.7293
	H 0 2.657 1.804 -0.155	3143.8925	3154.3045	3155.1098
	H 0 -2.11 2.806 0.853	3161.5506	3162.539	3165.9797
	H 0 0.435 3.287 0.409	3178.2411	3186.8518	3188.598
	Н 0 -1.396 4.211 -1.11			
	Н 0 -1.263 2.712 -2.138			
	C 0 -2.152 0.092 -0.149	35.9009	75.6634	127.0957
	C 0 -3.26 -0.633 -0.516	162.9468	182.2447	196.6156
p1	C 0 -0.924 -0.548 0.165	251.1516	320.3734	373.7855
	C 0 -3.2 -2.041 -0.6	418.8282	457.1064	481.5319
	C 0 -2.024 -2.693 -0.321	489.7887	522.1276	547.8821
	C 0 0.251 0.18 0.558	567.4946	630.1574	687.013
	C 0 -0.862 -1.975 0.063	698.409	744.5358	767.3197
	C 0 0.36 -2.641 0.34	797.9308	803.943	813.1828
	C 0 1.414 -0.524 0.823	827.7933	867.965	887.0651
	C 0 0.195 1.641 0.746	931.2322	934.5583	941.3922
e e e e e e e e e e e e e e e e e e e	C 0 1.473 -1.929 0.708	966.8558	986.0008	996.6793
6 6	C 0 1.084 2.561 0.32	999.2255	1035.0127	1049.1259
	C 0 2.246 2.338 -0.525	1055.3365	1095.965	1148.6139
	C 0 3.126 3.296 -0.841	1168.5464	1182.3772	1191.2111

	H 0 -2.208 1.173 -0.114	1232.6949	1252.5192	1281.8017
	H 0 -4.187 -0.12 -0.751	1291.1475	1321.6878	1368.0649
	H 0 -4.08 -2.602 -0.892	1387.7235	1403.7652	1421.6509
	H 0 -1.966 -3.774 -0.393	1464.0004	1476.2718	1493.7415
	H 0 0.397 -3.723 0.26	1545.0721	1613.4993	1631.036
	H 0 2.29 0.016 1.161	1641.9335	1660.9104	1690.4994
	H 0 -0.663 2.008 1.303	3123.1236	3131.1536	3144.5137
	H 0 2.403 -2.441 0.929	3158.1299	3159.8002	3161.2078
	H 0 0.906 3.596 0.604	3168.8784	3176.6736	3183.1994
	H 0 2.381 1.34 -0.93	3190.7238	3194.707	3219.511
	H 0 3.97 3.1 -1.492			
	H 0 3.028 4.306 -0.456			
	C 0 -1.837 0.792 -2.135	55.7633	69.8469	116.0843
	C 0 -3.135 0.451 -1.696	156.0784	176.804	205.5016
	C 0 -0.736 0.489 -1.37	240.9506	292.4842	327.1769
	C 0 -3.296 -0.224 -0.512	434.322	444.0873	479.0529
	C 0 -0.863 -0.173 -0.119	483.0494	525.705	550.3524
	C 0 -2.179 -0.569 0.294	570.6014	630.2366	646.7226
- 2	C 0 -2.349 -1.319 1.486	671.5896	746.5982	750.6219
p2	C 0 0.258 -0.513 0.72	791.3174	805.5662	814.0017
	C 0 0.032 -1.295 1.844	877.6656	890.2045	901.8403
<u>Ŷ</u>	C 0 1.642 -0.08 0.482	925.961	934.2756	970.639
್ದ್ರಾಟ್ಟ್	C 0 -1.26 -1.693 2.234	982.896	987.4508	997.1021
I	C 0 2.074 1.097 -0.008	1009.8906	1029.0444	1045.009
	C 0 3.479 1.468 -0.18	1062.9843	1087.5932	1112.1508
ΥĪ	C 0 4.49 0.636 -0.451	1168.6603	1185.4375	1198.4986
C. A. C. C.	H 0 -1.707 1.288 -3.091	1233.7322	1246.3094	1284.0654
	H 0 -3.996 0.705 -2.304	1316.1828	1328.368	1352.5505
C C C C C C C C C C C C C C C C C C C	H 0 0.25 0.731 -1.74	1378.5848	1384.7851	1425.7298
L L	H 0 -4.285 -0.518 -0.178	1452.1962	1471.9555	1492.0727
	H 0 -3.351 -1.605 1.785	1546.3887	1610.5194	1628.4077
	H 0 0.878 -1.579 2.46	1653.7418	1663.7592	1689.8234
	H 0 2.398 -0.778 0.84	3124.1184	3128.1088	3137.2852
	Н 0 -1.389 -2.284 3.133	3155.03	3157.9877	3159.6582
	H 0 1.349 1.869 -0.249	3166.8155	3170.3	3184.5544
	H 0 3.694 2.532 -0.098	3185.7874	3215.4824	3220.3363
	H 0 4.332 -0.426 -0.605			

	H 0 5.507 0.998 -0.541			
	C 0 -2.197 0.381 0.044	66.9445	99.185	142.813
	C 0 -3.349 -0.368 0.124	218.4781	230.5184	291.3286
	C 0 -0.915 -0.232 0.042	392.265	396.0913	420.2034
	C 0 -3.285 -1.774 0.207	444.6533	484.8997	511.0493
	C 0 -2.063 -2.402 0.208	536.4157	538.2855	598.511
	C 0 0.303 0.524 -0.041	647.4787	680.0159	692.7309
	C 0 -0.859 -1.659 0.127	710.5671	753.2769	785.0991
	C 0 0.409 -2.296 0.126	821.4682	830.084	863.4701
n ³	C 0 0.228 2.035 -0.13	873.8948	935.1699	957.154
po	C 0 1.517 -0.135 -0.038	961.0556	978.1444	981.5039
	C 0 1.554 -1.553 0.047	985.1892	993.6225	996.6423
	C 0 2.841 0.595 -0.122	1014.2907	1052.4536	1096.5081
	C 0 1.558 2.724 -0.212	1168.9084	1172.5077	1199.7623
⋳ – ⋳ , <u>)</u> ⋳ –⋳	C 0 2.724 2.086 -0.209	1202.0015	1209.0593	1227.7955
<u>è-é</u> è-e	H 0 -2.275 1.459 -0.019	1236.6804	1242.188	1288.3804
	H 0 -4.314 0.127 0.124	1324.5955	1373.1057	1384.6569
	H 0 -4.199 -2.354 0.27	1407.3673	1419.9457	1424.4849
	H 0 -2.001 -3.484 0.272	1463.5234	1469.7251	1474.9807
	H 0 0.455 -3.378 0.19	1505.9139	1548.121	1614.2531
	H 0 -0.325 2.428 0.735	1645.6301	1663.9726	1742.6789
	H 0 -0.378 2.322 -1.001	2981.1844	2982.1504	2990.5347
	H 0 2.521 -2.048 0.047	2991.2458	3135.4725	3150.0455
	H 0 3.457 0.324 0.747	3157.3248	3158.4574	3167.3222
	H 0 3.404 0.219 -0.989	3171.2459	3183.6541	3198.627
	Н 0 1.537 3.809 -0.277			
	H 0 3.65 2.65 -0.272			
p4	C 0 -1.58 -0.037 -0.559	33.5397	81.0927	139.0546
	C 0 -2.453 -0.938 -1.119	151.6084	161.4624	177.6271
- ⁶ •	C 0 -0.363 -0.469 0.034	252.3335	326.0819	376.4035
	C 0 -2.16 -2.32 -1.115	422.1028	460.2352	480.5576
0 J 40	C 0 -0.996 -2.773 -0.545	487.2514	524.7125	537.8825
	C 0 0.568 0.438 0.635	565.7511	602.7639	677.4568
	C 0 -0.07 -1.871 0.043	690.7859	716.1328	747.7729
	C 0 1.131 -2.328 0.645	791.4521	795.492	808.5938
e e e	C 0 0.314 1.915 0.648	816.899	843.5358	879.6558
O O	C 0 1.72 -0.056 1.211	912.5893	927.8522	934.0712

	C 0 2.005 -1.44 1.218	945.2942	965.6708	984.9682
	C 0 0.613 2.705 -0.553	995.7815	1021.6684	1025.4482
	C 0 -0.154 2.513 1.755	1045.5415	1059.7085	1086.9065
	C 0 1.143 2.239 -1.688	1167.0052	1173.932	1184.404
	H 0 -1.815 1.02 -0.563	1228.1186	1238.4289	1279.7274
	Н 0 -3.377 -0.587 -1.567	1323.6522	1333.8285	1366.1235
	H 0 -2.858 -3.02 -1.559	1390.6665	1413.4242	1433.3925
	Н 0 -0.767 -3.834 -0.533	1457.8209	1468.4139	1494.2491
	H 0 1.343 -3.392 0.646	1544.8804	1617.3566	1635.2733
	H 0 2.421 0.636 1.663	1650.3532	1662.1875	1687.4524
	H 0 2.92 -1.792 1.681	3127.5118	3133.195	3145.2302
	H 0 0.381 3.765 -0.476	3157.6853	3160.0992	3168.9082
	H 0 -0.322 3.585 1.784	3172.5545	3183.4773	3186.0756
	H 0 -0.38 1.95 2.652	3197.5298	3222.6276	3227.7792
	H 0 1.339 2.898 -2.525			
	H 0 1.396 1.192 -1.814			
	C 0 -2.218 0.364 -0.37	90.32	124.5715	200.609
	C 0 -3.318 -0.408 -0.659	213.3272	230.2183	343.433
	C 0 -0.959 -0.233 -0.095	375.3046	421.0466	451.4276
	C 0 -3.216 -1.818 -0.686	459.2409	516.6884	530.7434
	C 0 -2.013 -2.428 -0.422	550.1834	594.4263	656.9103
-	C 0 0.204 0.513 0.222	683.2702	721.132	753.2974
p5	C 0 -0.856 -1.664 -0.12	759.2717	788.0454	796.5092
	C 0 0.394 -2.278 0.162	818.4384	830.6689	869.8101
	C 0 1.408 -0.119 0.475	873.2934	891.0246	930.5561
	C 0 0.332 2.019 0.361	957.3938	967.5811	984.3383
	C 0 1.509 -1.527 0.449	992.8884	997.6609	1036.583
	C 0 1.824 2.24 0.622	1045.4154	1057.7609	1071.4445
	C 0 2.49 0.874 0.728	1095.7205	1108.907	1167.4421
	C 0 2.801 1.801 -0.434	1177.9383	1185.2857	1187.8654
é é	H 0 -2.305 1.444 -0.352	1207.933	1223.0658	1235.2307
	H 0 -4.272 0.064 -0.868	1282.5768	1296.8393	1349.0689
	H 0 -4.091 -2.415 -0.916	1373.1338	1381.8922	1397.8576
	H 0 -1.933 -3.51 -0.442	1412.4373	1469.3786	1476.7508
	H 0 0.456 -3.362 0.141	1488.6833	1497.8602	1552.827
	H 0 -0.013 2.554 -0.531	1608.1359	1632.8421	1663.8602
	H 0 -0.269 2.385 1.202	3011.496	3038.8951	3110.2461

	H 0 2.459 -2.009 0.653	3155.3861	3157.6982	3158.701
	H 0 2.12 3.046 1.282	3164.7514	3169.0006	3175.961
	H 0 3.267 0.662 1.453	3177.8153	3187.7254	3197.5874
	H 0 3.772 2.282 -0.44			
	H 0 2.427 1.523 -1.414			
	C 0 -1.464 0.448 -0.86	85.8137	118.6477	178.2874
	C 0 -2.617 -0.296 -0.932	205.337	257.914	342.701
	C 0 -0.359 0.023 -0.074	411.6963	441.5407	479.1751
	C 0 -2.729 -1.515 -0.228	496.571	513.882	547.0604
	C 0 0.861 0.776 0.028	607.0323	635.1311	708.1703
	C 0 -0.47 -1.224 0.623	721.22	748.4969	795.6451
naprene	C 0 -1.675 -1.967 0.527	806.0462	817.4546	868.7295
	C 0 0.628 -1.696 1.387	881.4519	925.2972	944.7125
Ψ	C 0 1.001 2.083 -0.642	965.1727	985.1518	996.8835
€_ €	C 0 1.897 0.269 0.793	1023.3987	1032.3658	1049.6011
	C 0 1.788 -0.966 1.464	1058.7177	1113.8993	1168.6357
	C 0 2.118 2.55 -1.203	1185.2716	1191.9432	1232.6247
	H 0 -1.392 1.369 -1.425	1260.6432	1287.9812	1331.555
	H 0 -3.447 0.052 -1.538	1370.5385	1389.3623	1418.722
	Н 0 -3.643 -2.094 -0.292	1453.7803	1470.7121	1494.0121
6 6	H 0 -1.748 -2.908 1.063	1546.3834	1615.3459	1632.8052
	H 0 0.533 -2.64 1.912	1661.1751	1684.6818	3133.2046
	H 0 0.114 2.71 -0.666	3141.9642	3157.9901	3161.1406
	H 0 2.803 0.853 0.903	3169.4341	3174.7895	3184.0981
	H 0 2.622 -1.326 2.056	3188.0997	3197.6957	3219.3603
	H 0 2.152 3.537 -1.648			
	H 0 3.028 1.961 -1.249			
CaHa	C 0 -0.852 -0.153 0.000	710.263	818.8584	921.5323
	C 0 0.453 -0.141 0.000	1045.4745	1391.1849	1650.6757
	Н 0 -1.666 0.556 0.000	3036.774	3134.7552	3235.4777
	H 0 1.022 0.793 0.000			
	H 0 1.042 -1.056 0.000			
	C 0 -3.203081 -0.103566 0.280732	-124.2249	20.4714	35.6266
	C 0 -2.839564 -1.446317 -0.008152	48.7375	82.2756	135.9481
ts i0-i1	C 0 -1.545714 -1.782589 -0.324352	172.4682	192.8169	230.3229
	C 0 -0.532762 -0.784105 -0.372381	301.5257	369.5552	402.6657
	C 0 -0.893428 0.493567 -0.092923	467.6102	504.3262	507.6250

9	C 0 -2.189708 0.919117 0.239764	517.0973	521.8080	579.2284
	C 0 -4.530903 0.273186 0.610443	614.5319	617.1710	737.2080
	C 0 -2.552594 2.260328 0.531425	762.0449	774.0689	782.3221
	C 0 -4.848012 1.581125 0.885522	796.7637	801.5533	867.7801
	C 0 -3.850305 2.582754 0.845935	886.7395	901.9347	905.7383
	H 0 -3.609019 -2.210406 0.025698	925.2238	934.2584	962.8960
	H 0 -1.286198 -2.813471 -0.541838	977.1443	980.1435	995.7319
	H 0 0.488852 -1.047870 -0.624326	1008.1320	1036.0192	1046.7762
	H 0 -5.297040 -0.494967 0.642116	1051.2776	1136.5455	1168.5744
	H 0 -1.787223 3.026593 0.503214	1177.1351	1200.9463	1228.2380
	H 0 -5.867825 1.851286 1.135573	1235.7227	1269.8810	1299.6614
	H 0 -4.115200 3.610731 1.066300	1317.9063	1360.6699	1381.3128
	C 0 1.121619 2.136695 -0.176276	1386.4706	1405.8566	1452.3206
	C 0 2.104602 1.477475 -0.825947	1472.5182	1484.0123	1522.7614
	C 0 3.074718 0.619902 -0.178225	1582.6891	1607.2470	1636.3835
	C 0 4.041693 -0.052792 -0.820172	1655.4927	1661.1607	3125.2332
	H 0 1.054678 2.122971 0.905595	3134.9450	3138.0314	3145.1108
	H 0 0.460610 2.813483 -0.701258	3154.4834	3156.9452	3166.2396
	H 0 2.173538 1.562255 -1.908243	3168.3382	3178.0340	3181.4003
	H 0 2.995744 0.531427 0.903627	3192.2226	3222.2315	3235.7725
	Н 0 4.747376 -0.679677 -0.288874			
	H 0 4.154148 0.009867 -1.897977			
	C 0 -3.111696 -0.285837 0.622774	-509.4810	44.6155	73.5043
	C 0 -3.316925 -1.537567 -0.010039	116.8525	147.1873	176.1370
	C 0 -2.339269 -2.085409 -0.802801	181.1210	243.9086	254.7309
ts i1-p1	C 0 -1.124290 -1.403382 -1.004121	302.5242	314.2322	362.5315
φ.	C 0 -0.864367 -0.181253 -0.406494	409.3594	440.2766	481.2260
	C 0 -1.870839 0.407518 0.434589	495.9978	526.2935	549.3580
	C 0 0.416595 0.506073 -0.646539	566.9080	631.0468	648.3601
	C 0 1.620310 -0.115070 -0.761222	672.9375	745.0658	758.4254
	C 0 2.871527 0.581047 -0.949766	793.3305	805.0172	814.0706
	C 0 4.063696 -0.024021 -1.057596	875.0603	884.4075	894.3757
	C 0 -4.112146 0.291537 1.448086	922.8427	929.4169	962.1835
é	C 0 -1.691413 1.642761 1.113228	966.2443	974.0382	985.9670
	C 0 -3.907481 1.495268 2.074284	997.1400	1037.1560	1040.1178
	C 0 -2.680578 2.173867 1.906310	1056.2064	1109.2041	1169.1626
	H 0 -4.260773 -2.051016 0.139251	1183.5509	1190.3738	1197.0050

		•		
	H 0 -2.503038 -3.037662 -1.294524	1232.9896	1261.3783	1274.9526
	H 0 -0.386730 -1.829777 -1.674056	1299.5449	1310.2524	1330.3959
	H 0 0.416909 1.589303 -0.584843	1372.5419	1388.6368	1421.2383
	H 0 1.665879 -1.200256 -0.713785	1451.9167	1471.9770	1493.9517
	H 0 2.821002 1.666466 -1.006228	1546.6242	1609.2070	1616.1030
	H 0 4.977347 0.540970 -1.195470	1633.9780	1660.2336	1662.3660
	H 0 4.156270 -1.104383 -1.010403	3128.7864	3137.0851	3143.5070
	H 0 -5.047344 -0.243170 1.577789	3157.9973	3159.6036	3162.4854
	H 0 -0.753360 2.174202 1.019562	3170.5117	3175.1621	3184.8388
	H 0 -4.680201 1.924373 2.702022	3188.2969	3199.0895	3224.0744
	H 0 -2.516320 3.118908 2.411763			
	H 0 0.077237 1.011510 -2.661772			
	C 0 -0.449352 -0.332686 0.853568	-586.7024	54.1658	106.5734
	C 0 -0.598012 -1.744329 0.877599	133.5324	188.4624	235.1787
	C 0 1.688943 -0.555707 2.222160	239.5917	348.6813	391.8412
	C 0 0.482842 0.288834 1.874440	415.0313	436.4636	471.9364
	C 0 -1.047858 0.417015 -0.196534	485.9977	515.0739	544.4334
	C 0 -1.846539 -0.262626 -1.183329	569.3760	613.2733	651.6899
	C 0 -2.036542 -1.674858 -1.079405	683.6325	699.2924	743.2081
ts i2-i3	C 0 -1.469109 -2.384900 -0.068057	769.1409	795.9231	808.8904
	C 0 -0.920125 1.831145 -0.323167	818.0931	848.6986	865.4755
	C 0 -2.448853 0.476224 -2.223534	868.6143	919.3116	936.2529
	C 0 1.425602 -2.200175 0.379194	951.3901	960.6211	974.5052
TT 👳	C 0 2.085247 -1.657389 1.561434	985.6616	1002.6655	1015.2399
A. A. 🐋	C 0 -2.295179 1.843102 -2.314739	1045.7100	1053.0644	1077.9996
	C 0 -1.524381 2.520966 -1.348982	1099.4350	1159.8118	1183.0785
	H 0 -0.423164 -2.255080 1.817123	1189.5469	1202.1969	1225.0618
	H 0 2.239178 -0.246111 3.105916	1231.4511	1252.3818	1284.2026
X X	H 0 -0.065056 0.497930 2.804926	1327.1031	1365.0231	1388.6305
	H 0 0.833917 1.265785 1.527745	1405.3935	1419.1312	1454.9291
	H 0 -2.668335 -2.166133 -1.812523	1463.2244	1478.5779	1480.2277
	H 0 -1.645071 -3.451158 0.022995	1532.7332	1564.9171	1626.8869
	H 0 -0.344973 2.384505 0.407544	1636.5430	1647.7540	2982.6145
	H 0 -3.045340 -0.056218 -2.957534	3042.8860	3099.4407	3109.9579
	H 0 1.412752 -1.623796 -0.538236	3153.0678	3153.3445	3156.9084
	H 0 1.511033 -3.271909 0.213422	3160.9518	3166.5988	3178.2347
	H 0 2.900157 -2.239873 1.989631	3184.4579	3191.4359	3197.1554

	H 0 -2.765484 2.395446 -3.120077			
	H 0 -1.406296 3.596995 -1.414580			
	C 0 0.172134 -0.032104 0.438253	-782.0153	76.3073	102.8023
	C 0 0.287312 -1.411990 0.237458	143.7405	210.9560	229.6975
	C 0 1.533771 -2.175384 0.656911	297.7133	374.6603	390.9332
	C 0 2.389972 -1.444029 1.645343	393.1649	427.2843	438.8348
	C 0 2.198564 -0.168379 1.963585	487.0533	511.6798	518.5147
	C 0 1.116821 0.689399 1.373181	544.2244	558.4175	600.3735
	C 0 -0.903886 0.685224 -0.173445	656.9013	678.4331	700.4331
	C 0 -1.807294 0.000956 -1.048246	708.1697	753.9677	786.4496
ts i3-p3	C 0 -1.612460 -1.388397 -1.292606	819.6282	827.1285	860.1251
	C 0 -0.599099 -2.062852 -0.684958	874.8373	933.8851	956.7567
I	C 0 -1.114891 2.074214 0.041834	960.5837	976.4519	979.2139
	C 0 -2.863014 0.716403 -1.659098	988.7909	993.8672	997.5292
T T Se	C 0 -3.037603 2.061526 -1.426319	1013.4868	1053.2636	1095.7025
	C 0 -2.152450 2.743332 -0.566958	1164.9432	1171.7712	1197.5549
	H 0 -0.642061 -1.871199 1.790099	1201.7417	1203.6514	1228.4931
	H 0 2.123287 -2.390799 -0.247179	1235.1510	1237.9811	1288.4539
	H 0 1.247802 -3.154544 1.056518	1323.6515	1367.6912	1378.4370
T Zo	H 0 3.203484 -2.000826 2.101038	1408.3861	1415.4226	1422.6602
	H 0 2.852697 0.312790 2.685177	1459.7494	1465.9679	1473.6576
	H 0 0.538788 1.147609 2.188934	1493.0441	1541.6919	1589.0226
	H 0 1.579786 1.537420 0.848504	1639.2696	1652.1722	1739.9181
	H 0 -2.284533 -1.898951 -1.974459	2975.3248	2979.2894	2989.9879
	Н 0 -0.455306 -3.121761 -0.873416	3031.3618	3138.7319	3155.3114
	H 0 -0.450477 2.620401 0.698760	3158.6977	3161.5344	3168.7845
	H 0 -3.538670 0.182361 -2.319351	3174.5442	3183.7825	3199.3156
	H 0 -3.851989 2.597747 -1.900543			
	H 0 -2.291685 3.802833 -0.383017			
	C 0 -0.538287 -0.201909 0.378772	-340.3623	25.9357	38.3476
	C 0 -0.570690 -1.639106 0.458250	97.6698	104.4664	160.8284
	C 0 -0.169639 -2.404635 -0.669070	174.3035	205.6927	238.2305
ts i0_i4	C 0 0.245903 -1.796320 -1.827160	303.5246	377.3938	408.0956
15 10-14	C 0 0.284131 -0.378421 -1.917665	468.9671	489.3049	504.7007
	C 0 -0.092433 0.355837 -0.835697	517.6920	525.1215	533.2768
	C 0 -0.947107 0.551511 1.510686	599.5875	620.8761	703.4460
	C 0 -1.005719 -2.245305 1.665454	736.0433	762.1749	778.6401

	C 0 -1.363031 -0.072802 2.661348	794.3104	802.5585	839.4369
	C 0 -1.392113 -1.484001 2.741113	865.5036	878.3645	894.7371
	H 0 -0.199112 -3.486906 -0.599386	917.4747	935.7953	962.7063
	H 0 0.547890 -2.392944 -2.681684	974.7591	989.9669	995.0455
	H 0 0.615307 0.089259 -2.839970	1000.8343	1037.5297	1040.0143
	H 0 -0.929838 1.631473 1.450102	1058.8707	1137.8560	1168.4440
	H 0 -1.027910 -3.328895 1.724037	1178.3068	1205.1356	1212.7284
	H 0 -1.672157 0.517983 3.516407	1234.7277	1267.4706	1270.3993
	H 0 -1.721843 -1.963034 3.656207	1320.3163	1362.7797	1382.8462
	C 0 -1.205390 3.076479 -1.049704	1384.7315	1394.1936	1454.5591
	C 0 0.074015 2.614843 -1.197653	1467.3289	1483.6049	1524.1853
	C 0 1.147698 2.983131 -0.265257	1550.5639	1584.1264	1635.6986
	C 0 2.450899 2.896523 -0.536976	1660.1145	1689.5321	3128.5823
	H 0 -1.529023 3.557464 -0.133177	3136.5261	3139.1724	3144.4324
	H 0 -1.953987 2.917536 -1.815289	3149.7806	3155.5020	3159.1902
	H 0 0.394030 2.299919 -2.186051	3168.3905	3176.4351	3183.8611
	H 0 0.829954 3.379017 0.696986	3206.7323	3220.7125	3231.7790
	H 0 3.201182 3.209553 0.178957			
	H 0 2.809270 2.504750 -1.483579			
	C 0 0.090978 -0.371956 0.518184	-901.7182	59.4148	95.1438
	C 0 0.063826 -1.806784 0.473459	144.2312	164.0038	181.6425
	C 0 1.263073 -2.527228 0.246778	188.5834	248.2144	340.8275
ts iA_nA	C 0 2.448968 -1.863169 0.071103	382.7417	406.3045	421.2629
ts 14-p4	C 0 2.483160 -0.453995 0.105875	459.6736	480.3995	483.1111
9 7 0	C 0 1.344877 0.301598 0.317951	522.1971	535.2225	556.2953
	C 0 1.196478 2.410418 1.602982	581.4583	605.6914	646.7236
φ υ [−] ψ <u>Γ</u>	C 0 1.494067 1.795643 0.421597	684.2309	695.6265	746.4680
	C 0 2.304985 2.545324 -0.574169	762.4235	795.7520	805.6570
	C 0 2.777081 2.110098 -1.743339	816.8830	829.1289	878.8523
	C 0 -1.138964 0.302107 0.755862	890.3660	908.8731	934.6649
	C 0 -1.167362 -2.488228 0.663776	947.2409	967.4444	987.3816
v v v	C 0 -2.313340 -0.389322 0.934682	996.1998	1016.0666	1025.5751
é é	C 0 -2.332128 -1.800373 0.891416	1049.3909	1064.2243	1095.4557
-	H 0 1.224971 -3.611143 0.220911	1167.2728	1172.3418	1187.1824
	H 0 3.368940 -2.413292 -0.091427	1226.5679	1239.3905	1278.8104
	H 0 3.433254 0.049346 -0.020933	1310.2327	1331.6715	1360.8212
	H 0 1.394408 3.467010 1.744885	1384.5036	1401.9778	1428.7067

	H 0 0.720709 1.878143 2.415925	1453.3305	1469.9515	1493.3339
	H 0 2.507699 3.573312 -0.283133	1545.2311	1562.4019	1613.5631
	H 0 3.354939 2.768274 -2.381152	1635.9648	1660.5115	1684.0453
	H 0 2.594556 1.106788 -2.107820	3133.2880	3142.1503	3148.9391
	H 0 -1.151051 1.382454 0.788565	3158.6355	3162.0243	3170.1224
	H 0 -1.167643 -3.572625 0.625234	3179.0023	3185.2948	3195.7367
	H 0 -3.234903 0.154917 1.108520	3206.2931	3230.6448	3238.2557
	H 0 -3.264735 -2.334027 1.035928			
	H 0 0.006156 2.325712 -0.600657			
	C 0 -2.238267 -0.366115 1.062022	-117.4564	59.7709	99.8591
	C 0 -1.984023 -1.412815 1.913612	160.8639	213.8078	224.6157
	C 0 -0.678721 -1.750999 2.283304	252.2407	321.8073	381.2001
	C 0 0.428044 -0.951922 1.857078	407.3907	434.8270	476.1864
	C 0 0.219373 0.158509 0.988362	501.2698	508.0753	532.5519
	C 0 -1.156736 0.417258 0.446952	561.2098	638.5980	649.1745
	C 0 -1.511644 1.795902 -0.091107	678.2406	697.7143	706.2458
	C 0 -1.202498 0.738680 -1.107222	763.0141	785.9499	790.8602
te i1 i 4	C 0 -2.160107 0.240252 -2.126361	808.9067	811.9220	856.3262
15 11-14	C 0 -3.318095 -0.407263 -2.003104	876.7805	929.5483	937.7965
	C 0 1.736221 -1.225219 2.316434	949.0084	960.4221	977.9008
9 T9-0-0	C 0 1.319012 0.952467 0.648567	982.1148	1000.5413	1025.6893
	C 0 2.598367 0.670598 1.119318	1059.2039	1074.2026	1077.1239
	C 0 2.807998 -0.430537 1.953881	1102.8779	1114.3175	1146.0310
	H 0 -3.259541 -0.079847 0.849194	1153.2320	1179.2955	1186.5040
	H 0 -2.816143 -1.974874 2.324683	1233.0380	1245.2728	1284.4900
	H 0 -0.494072 -2.590413 2.943414	1319.6954	1340.6240	1348.7349
6 6	H 0 -0.805004 2.603103 0.064892	1391.4920	1419.9327	1451.2297
	H 0 -2.552263 2.083907 0.008844	1456.8161	1464.9230	1485.0747
	H 0 -0.192137 0.796061 -1.498549	1519.0350	1552.3344	1592.0986
	H 0 -1.825599 0.461203 -3.139718	1627.9990	1700.2398	3103.6830
	H 0 -3.884496 -0.677147 -2.887062	3112.0212	3142.6409	3152.6134
	H 0 -3.735200 -0.710208 -1.053096	3157.1935	3159.4147	3164.2710
	H 0 1.886177 -2.075849 2.973272	3175.4746	3180.6276	3188.9693
	H 0 1.188644 1.811712 0.000323	3195.3761	3200.5396	3239.4533
	H 0 3.428360 1.307650 0.835952			
	H 0 3.803350 -0.657096 2.319113			
ts i4 -naprene+ C_2H_3	C 0 -2.330649 -0.836686 0.037451	-349.4696	38.9391	60.5646

	C 0 -2.257204 -2.240704 0.139704	68.3190	125.4839	170.2495
Q 🖓 🖤	C 0 -1.112087 -2.836590 0.602225	171.5817	211.5569	223.4836
	C 0 0.016849 -2.050903 0.949033	271.7627	326.7593	370.1917
	C 0 -0.047674 -0.622237 0.834760	434.2751	450.0303	478.3564
	C 0 -1.276902 -0.017010 0.401274	495.1523	509.4453	563.5392
	C 0 -1.188731 2.343765 1.313894	589.0020	603.5603	669.5426
	C 0 -1.510799 1.448512 0.339018	703.6256	748.2794	789.0936
	C 0 1.221012 -2.658985 1.391432	793.6844	806.2734	818.3191
· · · · · ·	C 0 1.130641 0.119861 1.119782	857.4116	869.7759	878.1508
• •	C 0 2.284588 -0.502806 1.533428	881.9760	919.6795	935.6389
	C 0 2.329549 -1.905626 1.686406	957.9178	971.9720	983.9155
	H 0 -3.252395 -0.382308 -0.310730	998.7457	1006.5481	1048.8114
	H 0 -3.115023 -2.841848 -0.140042	1082.3327	1094.1988	1104.8859
	H 0 -1.048246 -3.915354 0.697968	1168.2719	1185.8104	1193.0366
	H 0 -1.555029 3.362278 1.264420	1236.6263	1242.6582	1283.1797
	H 0 -0.552493 2.088862 2.151207	1300.3006	1363.6541	1386.4343
	Н 0 -2.299156 1.737379 -0.349755	1389.4720	1423.2278	1443.2627
	H 0 1.250791 -3.739852 1.482948	1473.4558	1493.3061	1545.8690
	H 0 1.125138 1.190905 0.978614	1566.5402	1614.0045	1635.6414
	H 0 3.171719 0.087583 1.734052	1646.4139	1662.2641	3060.8925
	H 0 3.243429 -2.384103 2.020285	3138.8270	3141.7432	3147.2528
	C 0 -0.160021 1.963023 -1.496578	3156.8669	3158.4240	3165.4651
	C 0 0.322840 3.172061 -1.637931	3169.5275	3183.6079	3184.7919
	H 0 -0.140173 1.074937 -2.115339	3204.1704	3221.4263	3237.0909
	H 0 0.882681 3.470067 -2.526593			
	H 0 0.194345 3.935779 -0.873933			
4= :1 : 2	C 0 1.399746 0.393332 -0.346477	-207.8576	31.9199	39.0071
ls 11-12	C 0 2.830618 0.306985 -0.329974	124.6709	150.0522	178.9037
1 e	C 0 3.452661 -0.912224 0.045099	229.3630	272.3540	284.8917
	C 0 2.692635 -2.000724 0.381933	360.1677	414.1976	437.0298
<u>)</u> <u>)</u> <u>−</u> € <u>(</u>	C 0 1.281750 -1.917072 0.370091	479.4387	499.8462	519.2678
	C 0 0.624914 -0.755288 0.027788	534.1886	543.2162	611.2783
	C 0 -0.894748 -0.688008 0.010375	638.8764	670.8903	738.2409
	C 0 -1.615318 -1.792300 0.720214	742.9896	788.9791	804.6904
♥ 	C 0 -3.000034 -2.147682 0.369673	807.8361	856.6155	870.0363
	C 0 -3.364035 -3.183151 -0.385279	901.4530	928.9245	955.4971
	C 0 0.814022 1.624676 -0.748110	963.0402	983.0855	990.5459

	C 0 3.599175 1.442220 -0.695545	996.5886	1007.0707	1024.4762
	C 0 2.996624 2.616943 -1.072576	1051.1734	1083.4511	1097.6208
	C 0 1.588116 2.705021 -1.101140	1120.1662	1168.2656	1185.4950
	H 0 4.536200 -0.966713 0.054429	1189.3444	1213.6172	1230.1323
	H 0 3.166938 -2.935218 0.660522	1256.7973	1266.0964	1293.8311
	H 0 0.702960 -2.795023 0.631152	1318.2272	1367.9585	1385.8724
	H 0 -1.244932 -0.638553 -1.028937	1399.0168	1425.7154	1450.7586
	H 0 -1.206376 0.271709 0.457860	1457.0041	1470.8567	1495.2588
	H 0 -1.240175 -2.099119 1.694018	1548.0292	1619.2759	1640.6135
	H 0 -3.789342 -1.499128 0.764984	1663.6173	1684.0315	2926.9234
	H 0 -4.407440 -3.382618 -0.604198	3010.0298	3034.8949	3126.9534
	H 0 -2.631799 -3.864946 -0.805474	3129.8123	3157.2429	3159.9363
	H 0 -0.263741 1.717769 -0.785394	3168.3601	3173.8192	3183.6708
	H 0 4.681257 1.362813 -0.674354	3186.3324	3197.4097	3211.9660
	H 0 3.597290 3.475594 -1.350694			
	H 0 1.114035 3.631703 -1.404986			
	C 0 1.522644 0.097762 -0.250406	-432.5288	60.6116	67.0535
	C 0 2.953869 0.103580 -0.166967	83.6494	150.0743	177.7334
	C 0 3.629331 -1.033683 0.343322	187.1907	221.0352	260.0166
	C 0 2.923580 -2.138374 0.750736	276.4166	310.8321	348.7906
ts i2-p2	C 0 1.519017 -2.158026 0.654613	427.1458	447.1490	481.0233
	C 0 0.804091 -1.073805 0.172782	490.1172	531.1856	542.8552
•	C 0 -0.664734 -1.131995 0.080802	569.4717	634.6902	647.3125
	C 0 -1.470225 -1.739395 0.987281	669.9655	743.5603	766.8901
	C 0 -2.923969 -1.815332 0.924373	793.0014	804.7662	812.9680
	C 0 -3.682011 -1.712449 -0.175331	870.9833	887.5770	890.1162
8 a 8 a	C 0 0.880834 1.269963 -0.732681	922.1911	932.4951	963.6605
I I I	C 0 3.669743 1.254240 -0.589778	983.9500	985.8686	995.0868
	C 0 1.604084 2.368041 -1.133723	997.6315	1024.6495	1033.9777
	C 0 3.014560 2.361642 -1.066912	1054.8661	1083.1453	1113.9460
	H 0 4.712511 -1.017055 0.401003	1168.8700	1188.2408	1193.9760
T T T	H 0 3.443654 -3.010624 1.130383	1231.3837	1261.9025	1279.5907
	H 0 0.984687 -3.059254 0.931715	1311.1135	1324.4782	1346.3445
	H 0 -1.133096 -0.539187 -0.697125	1376.1917	1389.6090	1424.6864
	H 0 -1.009469 -2.197489 1.858568	1451.7579	1470.2585	1493.6659
	H 0 -3.420366 -1.995081 1.875464	1546.9230	1608.9426	1620.1975
	H 0 -4.762624 -1.764068 -0.116589	1633.6860	1661.6061	1672.8526

	H 0 -3.250477 -1.596036 -1.163490	3127.6399	3137.6895	3147.9832
	H 0 -0.199883 1.310129 -0.773983	3158.5855	3161.8834	3164.1533
	H 0 4.752782 1.242433 -0.524545	3170.5572	3174.5598	3184.9123
	H 0 1.087988 3.248755 -1.499192	3187.8760	3200.1759	3222.6469
	H 0 3.574121 3.233483 -1.386433			
	H 0 -0.798644 -2.594173 -1.519888			
	C 0 -1.713952 1.530563 0.109446	-875.4008	86.7455	123.9152
	C 0 -1.726096 0.190382 -0.380031	191.4219	223.9004	236.0709
	C 0 -0.524495 -0.593990 -0.321895	329.8066	361.4605	367.4444
	C 0 0.639617 0.008840 0.208226	425.9967	456.5201	474.4769
	C 0 0.660319 1.371506 0.536124	513.2521	534.6412	552.1933
	C 0 -0.565742 2.109831 0.570751	587.8563	626.6983	662.6673
	C 0 1.952469 -0.660012 0.558096	691.2878	718.4738	750.3867
	C 0 2.769996 0.437243 1.247288	758.7215	784.4892	792.9829
	C 0 1.944155 1.720174 1.234901	816.4111	828.8256	865.0002
ts i5-p5	C 0 3.223117 1.615689 0.433789	874.9674	887.5618	926.6962
	C 0 -2.905252 -0.405713 -0.886570	957.3396	972.0629	978.4459
9 D D	C 0 -0.571299 -1.945153 -0.757275	992.4482	1004.5720	1037.5813
	C 0 -1.735988 -2.490169 -1.245062	1047.0466	1055.9241	1067.7114
	C 0 -2.913816 -1.714411 -1.313790	1097.7602	1112.2434	1167.6157
	H 0 -2.643873 2.089426 0.106754	1175.6681	1186.0622	1187.8408
	H 0 -0.563432 3.134447 0.925195	1205.3992	1214.0389	1232.1763
	H 0 2.467535 -1.063754 -0.322352	1282.4534	1296.7070	1339.6816
6	H 0 1.783079 -1.504445 1.235858	1368.8358	1376.4316	1396.1248
	H 0 3.350824 0.167967 2.121150	1412.1377	1465.1874	1470.2982
	H 0 1.907466 2.391864 2.084536	1485.5145	1487.3898	1539.3448
	H 0 3.130716 1.578857 -0.646411	1580.2813	1625.0260	1651.1685
	H 0 4.082567 2.167078 0.798395	3009.8404	3036.1124	3108.0585
	H 0 -3.811686 0.189232 -0.932169	3157.1265	3157.6282	3161.4285
	H 0 0.330436 -2.545355 -0.713094	3164.1811	3166.2594	3178.8495
	H 0 -1.752261 -3.520495 -1.582628	3181.7667	3188.9669	3196.5529
	H 0 -3.825550 -2.154358 -1.701682			
	H 0 1.045147 2.044755 -1.113550			
	C 0 -1.627157 -1.803609 0.082459	-464.5431	66.9611	115.6991
te i1_i5	C 0 -1.905213 -0.450877 -0.273617	161.4581	187.3474	243.3371
10 11-13	C 0 -0.898299 0.556522 -0.066198	249.4454	365.5073	420.5949
	C 0 0.345772 0.181468 0.503924	433.8224	452.7775	478.3024

6	C 0 0.590620 -1.171660 0.835925	515.9064	526.8246	559.1623
	C 0 -0.432618 -2.152222 0.640761	614.1024	669.2268	715.2419
	C 0 1.593593 1.034893 0.480163	740.5044	750.4616	768.8851
	C 0 2.607712 0.268446 -0.406364	783.4692	802.8659	811.4183
	C 0 2.316963 -1.176457 -0.534991	812.2838	841.2933	869.8906
	C 0 3.524131 -0.779673 0.218596	871.8614	896.0780	947.2929
	C 0 -3.149865 -0.081357 -0.831513	954.8889	976.3308	987.8167
	C 0 -1.214036 1.894108 -0.441667	1000.2683	1023.6164	1045.9925
v Ψ	C 0 -2.437433 2.218294 -0.978510	1053.4883	1064.1024	1075.2123
	C 0 -3.418481 1.224032 -1.179239	1100.1904	1105.1942	1161.6369
	H 0 -2.399180 -2.549333 -0.077759	1181.5275	1186.7683	1192.5037
	H 0 1.361848 -1.401340 1.563183	1217.9521	1230.3242	1246.8590
	H 0 -0.246340 -3.176438 0.944327	1280.8977	1296.5056	1358.5689
	H 0 1.996039 1.174290 1.490112	1368.0662	1391.6354	1420.2382
	H 0 1.418179 2.029434 0.072655	1458.3857	1469.9247	1484.1304
	H 0 2.988726 0.815306 -1.264349	1491.1429	1536.0682	1571.7890
	H 0 2.217866 -1.803934 -1.409493	1622.4153	1640.7728	3021.0712
	H 0 3.528238 -0.859680 1.305120	3060.8903	3105.8734	3121.6262
	H 0 4.501816 -0.951332 -0.227319	3133.2918	3144.6333	3155.4374
	H 0 -3.898599 -0.852205 -0.983686	3158.4795	3166.9607	3179.2035
	H 0 -0.482200 2.677043 -0.287273	3182.9582	3195.0150	3200.9908
	H 0 -2.651762 3.246292 -1.249191			
	H 0 -4.379319 1.489989 -1.605057			
	C 0 -2.426787 -1.137016 0.044742	-1567.4694	15.0781	39.5874
H abstraction ts1	C 0 -2.583303 -2.026627 1.140925	53.9720	109.0329	122.4842
	C 0 -1.556403 -2.254645 2.024249	171.4611	188.2460	211.3194
0 0	C 0 -0.309165 -1.598320 1.855899	279.4625	343.3363	384.5244
	C 0 -0.149910 -0.742145 0.804946	405.1531	471.9237	506.8783
	C 0 -1.167871 -0.468851 -0.134574	516.5439	519.6303	534.4181
	C 0 -3.469926 -0.881988 -0.883187	553.6947	623.7349	656.4363
	C 0 -1.009507 0.419754 -1.230633	741.7745	755.5525	780.1884
• • • • • • • • • • • • • • • • • • •	C 0 -2.043434 0.640479 -2.107617	793.1135	802.4665	805.8505
	C 0 -3.284453 -0.015445 -1.932615	870.2391	892.2884	908.2123
	H 0 -3.536741 -2.528122 1.270645	915.7637	949.5430	952.8373
	H 0 -1.692579 -2.937560 2.855954	965.5124	981.0876	998.2115
	H 0 0.499888 -1.780678 2.555697	1009.2842	1014.2216	1037.1413
	H 0 -4.421845 -1.385701 -0.748960	1055.1381	1146.2794	1168.8957

	H 0 -0.056518 0.918693 -1.363403	1178.9283	1192.0473	1215.3029
	H 0 -1.911135 1.321144 -2.941109	1228.9947	1247.5661	1275.1397
	H 0 -4.090925 0.169292 -2.633368	1292.9832	1310.1168	1372.9712
	C 0 1.658150 2.099621 2.235646	1388.2162	1402.1403	1411.3210
	C 0 2.529942 1.549522 1.383923	1456.8488	1463.7531	1486.4962
	C 0 2.265869 0.396459 0.548623	1531.8948	1591.9274	1636.1211
	C 0 3.068723 -0.207832 -0.320779	1650.2225	1661.6764	1695.0667
	H 0 1.923502 2.964523 2.831463	3083.1652	3092.7782	3141.5610
	H 0 0.657681 1.700175 2.359115	3154.9020	3157.1567	3164.0314
	H 0 3.528075 1.981962 1.289805	3168.0091	3179.0728	3180.3621
	H 0 2.747714 -1.074269 -0.888989	3188.1112	3190.2308	3228.1310
	H 0 4.085190 0.143245 -0.495794			
	Н 0 1.067767 -0.125668 0.670397			
	C 0 -3.305664 -0.345009 -0.377554	-1590.5132	16.6708	36.0458
	C 0 -3.643640 -1.713529 -0.552328	63.6068	98.0986	135.4360
	C 0 -2.703413 -2.633296 -0.948317	172.8479	200.9571	246.9359
	C 0 -1.365756 -2.228082 -1.194022	261.5813	373.5996	391.6835
	C 0 -1.031001 -0.914847 -1.028239	412.7539	472.7403	507.3900
	C 0 -1.953777 0.073793 -0.621394	518.8686	528.3325	561.0033
	C 0 -4.255407 0.627353 0.030642	582.0724	625.0105	657.8540
H abstraction ts?	C 0 -1.613309 1.440885 -0.444501	742.0966	771.3940	781.0638
11 0050 00101 052	C 0 -3.893857 1.942799 0.191045	795.3219	802.8683	806.3215
	C 0 -2.561210 2.352536 -0.048118	871.6433	899.8258	911.5203
	H 0 -4.666681 -2.023734 -0.366456	929.1022	946.4915	951.1853
	H 0 -2.978114 -3.674746 -1.076694	966.4196	981.0175	998.6774
	H 0 -0.626249 -2.956707 -1.509668	1007.6796	1035.2109	1037.6651
	H 0 -5.277574 0.312611 0.215081	1055.1197	1148.3414	1169.3163
	H 0 -0.590344 1.750555 -0.625782	1177.7968	1189.5628	1210.3752
er= ₩	H 0 -4.630693 2.674290 0.503453	1228.9204	1254.2474	1261.6830
	H 0 -2.290001 3.393902 0.084194	1275.8369	1304.3991	1328.7873
	C 0 1.494013 -0.233706 -1.594725	1373.4869	1388.2058	1403.6123
	C 0 2.433734 -0.303270 -0.656412	1447.1503	1464.5826	1486.7559
	C 0 2.218661 -0.706185 0.728829	1532.6051	1592.6718	1630.1769
	C 0 3.189616 -0.765804 1.645496	1636.6761	1662.0790	1689.2612
	H 0 1.629240 0.061747 -2.629158	3063.9193	3131.4839	3150.1189
	H 0 3.461743 -0.042921 -0.922343	3155.1105	3157.0495	3164.6206
	H 0 1.200483 -0.968140 1.003782	3167.2247	3178.7543	3179.7123

H 0 2.989192 -1.070079 2.665649	3182.4237	3189.2235	3220.1694
H 0 4.216506 -0.511100 1.401893			
H 0 0.232501 -0.552314 -1.295354			