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The pendular spectra of linear (HCCCN)n (n= 1−3) molecules at several rotational temperatures under a cer-
tain range of electric field strength E are calculated using the finite element matrix diagonalization method. In
addition, the normalized “ Q-branch” intensity (IQ) and the gradient (KE ) of IQ under corresponding con-
ditions are investigated. Based on the results, the range and sensitivity of measuring the electric field strength
with linear (HCCCN)n (n= 1− 3) molecules are analyzed. A scheme to measure electric field strength based on
(HCCCN)n (n= 1− 3) with high sensitivity is proposed and the spatial resolution is also discussed. The feasibil-
ity of measuring the electric field strength of the electrostatic Stark decelerator based on a pendular spectrum is
studied. ©2021Optical Society of America

https://doi.org/10.1364/JOSAB.428553

1. INTRODUCTION

In research fields such as spectroscopic measurements [1],
electrostatic Stark deceleration of molecules [2–5], and the
measurement of the electron’s electric dipole moment [6], the
accurate value of the electrostatic field strength has a critical
effect on the experimental results. There are two traditional
electric field measurement methods. One is the electric potential
difference method using the spherical electric field meter [7] and
the field-mill electric field sensor [8]. The other is the electro-
optical method, and corresponding applications include sensors
using the electro-optical Kerr effect [9] and the electrostrictive
effect [10]. These two measurement methods use detectors with
large probes and complex internal structures, which means they
are susceptible to interference and have a low spatial resolution
(dozens of centimeters). Some other methods developed in the
laboratory to measure electric fields that are based on microelec-
tromechanical system sensors [11] and atomic and molecular
Stark spectra [12,13], have limited measurement ranges (typi-
cally 1− 104 V/cm). Therefore, an electric field measurement
method with a broader range and higher resolution is needed.

In the 1990s, Block et al. [14] and Rost et al. [15] reported
experimental and theoretical studies on pendular spectra of
(HCN)3 in a strong electrostatic field, respectively. Under field-
free conditions, the C-H vibrational spectra of the (HCN)3
molecules have P (1J =−1) and R (1J =+1) branches.

When (HCN)3 are exposed in a strong external electric field,
a so-called “Q-branch” spectrum appears. Then, Slenczka
et al. studied the pendular spectrum driven by a magnetic field
[16]. Yang et al. measured the pendular spectrum of the C-H
vibration of (HCCCN)3 [17]. Subsequently, pendular states
and pendular spectra of molecules were studied in molecular
dissociation processes [18], the manipulation of molecules [19],
the orientation and alignment of polar molecules in laser fields
[20–23], and quantum computing [24–26]. These studies have
further broadened the application of pendular spectra. Our
group proposed a method using the normalized “Q-branch”
intensity of linear (HCCCN)3 pendular spectra to measure the
3D vector and spatial distribution of electric fields [27].

In the present work, the pendular spectra and the cor-
responding normalized “Q-branch” intensity IQ of
(HCCCN)n (n= 1− 3) at various rotational temperatures
(T= 1 K, 10 K, and 30 K) under different electric field strengths
(E= 0 V/cm, 500 V/cm, 5000 V/cm, and 50,000 V/cm) are
calculated. The gradient curves of IQ with the variation of
electrostatic field strength are also calculated. Finally, the fea-
sibility of using (HCCCN)n (n= 1− 3) to measure the electric
field strength in electrostatic Stark deceleration experiments is
analyzed and discussed.
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2. NUMERICAL CALCULATION METHOD

The detailed theory of pendular spectra has been introduced
in our previous study [27]. Here, only a brief description
is provided. The field-free linear (HCCCN)n (n= 1− 3)
molecules are free rotors, and the Schrödinger equation can be
expressed as

J 2

2I
|J , M〉 = B J ( J + 1) |J , M〉 , (1)

where, J 2, I , J , M, and B are the square of the angu-
lar momentum operator, the momentum of inertia of the
molecules, the rotational quantum number, the projection of
J on the molecular axis, and the molecular rotational constant,
respectively. In an external electric field E , the eigen equation of
(HCCCN)n (n= 1− 3)molecules is(

J 2
−ω cos θ

)
|J , M;ω〉 = E eigen |J , M;ω〉 , (2)

where θ is the angle between the molecular axis and the direction
of the external electric field, E eigen is the eigen energy in units of
the rotational constant, ω=µ · E/B represents the strength of
the interaction between molecules and the electric field; andµ is
the permanent electric dipole moment of the molecule.

To calculate the transition between the upper and lower
states, a Boltzmann distribution [28] is used to derive the
population of molecules with a J rotational quantum number:

NJ= N0(2J + 1)e
−hc B J (J+1)

kB T , (3)

where NJ is the population of molecules with a J quantum
number, N0 is the total population of molecules, kB is the
Boltzmann constant, and T is the rotational temperature.

In an electrostatic field, the eigenvalues of the energy levels
of (HCCCN)n (n= 1− 3) molecules are calculated using the
finite element matrix diagonalization method [29]. By calculat-
ing the coupling strengths for each transition line, the pendular
spectrum is obtained.

To describe the variation of “Q-branch” spectrum with the
applied electric field, the ratio of “Q-branch” spectrum intensity
to the whole spectrum intensity IQ is calculated by

IQ =

∫ υQ max
υQ min

SQ(υ)dυ∫ υmax
υmin

S(υ)dυ
, (4)

where IQ is the normalized “Q-branch” intensity, SQ(υ) and
S(υ) are the “Q-branch” spectrum function and the whole
spectrum function of frequency υ, υQ max and υQ min are the
maximum and minimum values in the frequency domain of
the “Q-branch” spectrum, and υmax and υmin are the maximum
and minimum values in the frequency domain of the whole
spectrum.

3. RESULTS AND DISCUSSION

A. Pendular Spectra of HCCCN and (HCCCN)2

The pendular spectra of (HCCCN)n (n= 1− 3) were cal-
culated at several different electric field strengths (range of
0− 108 V/cm) at three rotational temperatures: 1 K, 10 K,
and 30 K. The pendular spectra of (HCCCN)3 have been
calculated (at 0.25 K, 1 K, and 5 K) in our previous paper
[27]; here, the spectra of HCCCN and (HCCCN)2 in four
electric field strengths (0 V/cm, 500 V/cm, 5000 V/cm, and
50,000 V/cm) at different rotational temperatures are shown
in Fig. 1 and Fig. 2, respectively. The molecular parame-
ters used in the calculation are listed in Table 1. From [17]
and Table 1, it can be derived that for the same electric field
strength ω(HCCCN)3 >ω(HCCCN)2 >ωHCCCN, which means
that (HCCCN)3 can be oriented in a weaker electric field than
(HCCCN)2, and HCCCN needs a stronger electric field to be
oriented than (HCCCN)2.

As shown in Figs. 1 and 2, the number of spectral peaks is
relatively few at a low rotational temperature because the low J
values of molecules [known from Eq. (3)] result in fewer tran-
sitions. With the rising rotational temperature, the population
of molecules on high-J levels increases; thus, the number of
spectral peaks increases. It is clearly shown in Figs. 1 and 2 that
there is no “Q-branch” with E = 0 V/cm. With an increase
in the electric field strength E , a so-called “Q-branch” appears
and gets stronger. Under the condition that E is large enough,
the molecules are almost fully oriented; thus the “Q-branch”
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Fig. 1. Pendular spectra of HCCCN under 0 V/cm, 500 V/cm, 5000 V/cm, and 50,000 V/cm electric fields with rotational temperatures
T = (a) 1 K, (b) 10 K, and (c) 30 K, respectively.
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Fig. 2. Pendular spectra of (HCCCN)2 under 0 V/cm, 500 V/cm, 5000 V/cm, and 50,000 V/cm electric fields with rotational temperatures
T = (a) 1 K, (b)10 K, and (c)30 K, respectively.

Table 1. Molecular Parameters of HCCCN and
(HCCCN)2 Molecules

HCCCN (HCCCN)2

µ /Debye B/cm−1 µ /Debye B/cm−1

Lower state 3.73172
a

0.15163530
b

7.6228
c

0.0113097
d

Upper state 3.8063
e

0.15149762
f

7.7753
e

0.01125979
d

aFrom [30].
bFrom [31].
cGaussian calculation result of electric dipole moment using the STO-3 G

method.
dFrom [32].
eThe difference in the electric dipole moment between the upper state and

the ground state of (HCCCN)3 in [17] is around 2%, so an estimated differ-
ence of 2% relative to the ground state is used for the upper state electric dipole
moment of HCCCN and (HCCCN)2.

f From [33].

dominates the spectrum. For the pendular spectra of HCCCN
and (HCCCN)2 at the same rotational temperature in the same
electric field strength (e.g., Figs. 1(a) and 2(a), 1 K, 5000 V/cm),
the relative intensity of the “Q-branch” of (HCCCN)2 is
stronger than that of HCCCN. This shows (HCCCN)2 can be
oriented more easily than HCCCN. This characteristic of the
“Q-branch” intensity increasing with the electric field strength
E suggests that HCCCN and (HCCCN)2 have the potential to
be used to measure the electric field.

B. Comparison of Electric Field Measurement with
(HCCCN)n (n= 1− 3)

To illustrate the relationship between the intensity of the “Q-
branch” spectra of (HCCCN)n (n= 1− 3) and the electric
field strength E , the normalized “Q-branch” intensities IQ of
each molecule under different rotational temperatures were
calculated and shown in Fig. 3. It can be seen for each molecule
that when the electric field strength E increases gradually from
0 V/cm to 108 V/cm, the increment of IQ first accelerates, then
slows down, and ultimately reaches 1. This relationship between
the IQ of (HCCCN)n (n= 1− 3) and E shows that the electric

field strength measured can be up to 108 V/cm using this pro-
posed method. From Fig. 3, two conclusions can be drawn. One
is that, for the same molecule [Figs. 3(a)–3(c)] to get a certain
normalized “Q-branch” intensity value IQ , the molecule with
a rotational temperature 30 K must be applied the strongest E ,
unlike those with rotational temperatures of 1 K and 10 K. This
indicates that the molecule with higher rotational temperature
must have a higher E applied to achieve the same IQ . The other
is at a certain rotational temperature, such as 30 K [Fig. 3(d)],
to get the same normalized “Q-branch” intensity value IQ , the
highest E should be applied to HCCCN molecule compared to
what is applied to the (HCCCN)2 and (HCCCN)3 molecules.
This means the IQ of HCCCN increases more slowly than
that of (HCCCN)2 and (HCCCN)3 at the same rotational
temperature. Based on the results of Fig. 3, it can be inferred that
the HCCCN molecule with a rotational temperature higher
than 30 K [34,35] can be used to measure an electric field with a
strength of more than 108 V/cm.

In practical measurement, the gradient of IQ dominates
the sensitivity. Therefore, K E , the gradient of IQ , is defined to
evaluate the sensitivity as

K E =
dIQ

d(lgE)
. (5)

The K E of (HCCCN)n (n= 1− 3) was calculated as
a function of the electric field strength. The K E curves of
(HCCCN)n (n= 1− 3) at 1 K, 10 K, and 30 K rotational
temperatures are shown, respectively, in Fig. 4.

As shown in Fig. 4(a), if E is weaker than 103.60 V/cm, the
measurement sensitivity of (HCCCN)3 is the highest when the
rotational temperature is 1 K. When the electric field strength
increases to the range of 103.60

− 103.81 V/cm, the measure-
ment sensitivity of (HCCCN)2 shows an advantage. When the
electric field strength is higher than 103.81 V/cm, the measure-
ment sensitivity of HCCCN molecules is the highest. Similar
conclusions can be drawn for 10 K and 30 K in Fig. 4. For the
convenience of comparison, all the results are summarized in
Table 2.
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Fig. 3. Normalized “Q-branch” intensity of the pendular spectra of (a) HCCCN, (b) (HCCCN)2, and (c) (HCCCN)3 with 1 K, 10 K, and
30 K rotational temperatures, respectively. (d) Normalized “Q-branch“ intensity of (HCCCN)n (n= 1− 3) at 30 K (rotational temperature). The
scatters are the calculated data, and the curves are the fitted lines.
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Fig. 4. Relationship between K E and E of (HCCCN)n (n= 1− 3) molecules at (a) 1 K, (b) 10 K, and (c) 30 K rotational temperatures,
respectively.

Table 2. Sensitivity Range of Measuring Electric Field
Strength with (HCCCN)n (n= 1− 3) under 1 K, 10 K, and
30 K [Unit/(V/cm)]

HCCCN (HCCCN)2 (HCCCN)3

1 K >103.81 103.60
− 103.81 <103.60

10 K >105.11 104.72
− 105.11 <104.72

30 K >105.58 104.89
− 105.58 <104.89

As shown in Table 2, HCCCN, (HCCCN)2, and
(HCCCN)3 molecules at the same rotational temperature
are suitable to measure, respectively, relatively weak, medium

strong, and relatively intense electric fields. It can be inferred
that the suitable measurement range of electric field strength for
each molecule increases with a rise in the rotational temperature.
The range and varying trend of sensitivity shown in Fig. 4 gives
clear instructions for the selection of the appropriate molecule
and rotational temperature to measure the electric field strength.

Based on the results, a scheme to measure the electric field
strength is proposed. In experimental measurement, the
jetting of HCCCN sample forms the molecule beam with
(HCCCN)n (n= 1− 3) [17], and the corresponding rota-
tional temperatures of the three molecules are the same. First,
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determine the range of the electric field to be measured under
a certain condition (the applied voltage, the distance between
electrodes). Then, choose the appropriate molecule by the range
and rotational temperature according to Table 2, and collect
the pendular spectrum. Finally, calculate the normalized “Q-
branch” intensity IQ , to obtain the electric field strength. In this
way, a higher sensitivity can be achieved. The spatial resolution
of this proposal depends directly on the focal diameter of the
probe laser. For a Gaussian laser beam (quasi-parallel), the waist
diameter d is expressed as

d =
2λ f
πω

, (6)

where λ, f , and ω are the wavelength, focal length, and radius
of the laser spot on the lens, respectively. For the C-H ν1 vibra-
tion of (HCCCN)n (n= 1− 3), the transition wavelength is
around 3.3 µm. Considering f and ω to be 10 cm and 3 mm,
respectively, which are common in the laboratory, the theoreti-
cal spatial resolution is 70 µm. Therefore, the spatial resolution
of the pendular spectrum electric field measurement is far higher
than those of the traditional methods [7–10].

One possible application of the measurement method men-
tioned above is the electrostatic Stark decelerators that have
successfully decelerated polar molecules [2–5]. The exact value
of the electric field strength has a significant influence on the
deceleration result. The voltage applied on the Stark electrodes
is 10–50 kV, and the electrode spacing is a few millimeters. As
a result, the electric field strength of the Stark decelerator is
on the magnitude of 105 V/cm. For such intense electric field
in the narrow space, there is no suitable method to measure
the electric field strength. However, the electric field distribu-
tion is generally calculated, so it can be quite different from
the actual situation, which hinders further enhancement of
the deceleration effect. The scheme proposed in this paper
exactly covers this electric field strength. For the electrostatic
field, assuming the rotational temperature of the prepared
(HCCCN)n (n= 1− 3) molecule beam is 30 K, it can be
seen from Table 2 that the pendular spectrum of (HCCCN)2
molecules can be used for the sensitive measurement of the
electric field strength.

4. CONCLUSION

In this paper, the pendular spectra of linear (HCCCN)n (n=
1− 3) molecules at certain rotational temperatures under dif-
ferent electric field strengths and the corresponding normalized
“Q-branch” intensity IQ are calculated. The measurement
range and sensitivity with (HCCCN)n (n= 1− 3) under
the calculated conditions are analyzed. The results demon-
strate that (HCCCN)n (n= 1− 3) molecules can be used to
measure an electric field, and the measured range can reach or
even exceed 108 V/cm. A scheme is also proposed to achieve
high sensitivity by choosing the appropriate molecule from
(HCCCN)n (n= 1− 3). In addition, the spatial resolution of
this method can reach 70 µm, which, to the best of our knowl-
edge, is far better than traditional methods. In conclusion, we
believe the scheme based on pendular spectrum that has been
proposed in this paper can significantly improve the range and

sensitivity of the measurement of electric field strength and has
great superiority.
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